Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdaddmzz2nncomi.1 | ⊢ 𝑀 ∈ ℕ | |
| gcdaddmzz2nncomi.2 | ⊢ 𝑁 ∈ ℕ | ||
| gcdaddmzz2nncomi.3 | ⊢ 𝐾 ∈ ℤ | ||
| Assertion | gcdaddmzz2nncomi | ⊢ ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdaddmzz2nncomi.1 | ⊢ 𝑀 ∈ ℕ | |
| 2 | gcdaddmzz2nncomi.2 | ⊢ 𝑁 ∈ ℕ | |
| 3 | gcdaddmzz2nncomi.3 | ⊢ 𝐾 ∈ ℤ | |
| 4 | 1 2 3 | gcdaddmzz2nni | ⊢ ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( 𝑁 + ( 𝐾 · 𝑀 ) ) ) |
| 5 | 2 | nncni | ⊢ 𝑁 ∈ ℂ |
| 6 | zcn | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) | |
| 7 | 3 6 | ax-mp | ⊢ 𝐾 ∈ ℂ |
| 8 | 1 | nncni | ⊢ 𝑀 ∈ ℂ |
| 9 | 7 8 | mulcli | ⊢ ( 𝐾 · 𝑀 ) ∈ ℂ |
| 10 | 5 9 | addcomi | ⊢ ( 𝑁 + ( 𝐾 · 𝑀 ) ) = ( ( 𝐾 · 𝑀 ) + 𝑁 ) |
| 11 | 10 | oveq2i | ⊢ ( 𝑀 gcd ( 𝑁 + ( 𝐾 · 𝑀 ) ) ) = ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) |
| 12 | 4 11 | eqtri | ⊢ ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( ( 𝐾 · 𝑀 ) + 𝑁 ) ) |