Metamath Proof Explorer


Theorem gcdaddmzz2nncomi

Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Hypotheses gcdaddmzz2nncomi.1
|- M e. NN
gcdaddmzz2nncomi.2
|- N e. NN
gcdaddmzz2nncomi.3
|- K e. ZZ
Assertion gcdaddmzz2nncomi
|- ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) )

Proof

Step Hyp Ref Expression
1 gcdaddmzz2nncomi.1
 |-  M e. NN
2 gcdaddmzz2nncomi.2
 |-  N e. NN
3 gcdaddmzz2nncomi.3
 |-  K e. ZZ
4 1 2 3 gcdaddmzz2nni
 |-  ( M gcd N ) = ( M gcd ( N + ( K x. M ) ) )
5 2 nncni
 |-  N e. CC
6 zcn
 |-  ( K e. ZZ -> K e. CC )
7 3 6 ax-mp
 |-  K e. CC
8 1 nncni
 |-  M e. CC
9 7 8 mulcli
 |-  ( K x. M ) e. CC
10 5 9 addcomi
 |-  ( N + ( K x. M ) ) = ( ( K x. M ) + N )
11 10 oveq2i
 |-  ( M gcd ( N + ( K x. M ) ) ) = ( M gcd ( ( K x. M ) + N ) )
12 4 11 eqtri
 |-  ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) )