Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdaddmzz2nncomi.1 | |- M e. NN |
|
| gcdaddmzz2nncomi.2 | |- N e. NN |
||
| gcdaddmzz2nncomi.3 | |- K e. ZZ |
||
| Assertion | gcdaddmzz2nncomi | |- ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdaddmzz2nncomi.1 | |- M e. NN |
|
| 2 | gcdaddmzz2nncomi.2 | |- N e. NN |
|
| 3 | gcdaddmzz2nncomi.3 | |- K e. ZZ |
|
| 4 | 1 2 3 | gcdaddmzz2nni | |- ( M gcd N ) = ( M gcd ( N + ( K x. M ) ) ) |
| 5 | 2 | nncni | |- N e. CC |
| 6 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 7 | 3 6 | ax-mp | |- K e. CC |
| 8 | 1 | nncni | |- M e. CC |
| 9 | 7 8 | mulcli | |- ( K x. M ) e. CC |
| 10 | 5 9 | addcomi | |- ( N + ( K x. M ) ) = ( ( K x. M ) + N ) |
| 11 | 10 | oveq2i | |- ( M gcd ( N + ( K x. M ) ) ) = ( M gcd ( ( K x. M ) + N ) ) |
| 12 | 4 11 | eqtri | |- ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) |