Metamath Proof Explorer


Theorem gcdaddmzz2nni

Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Hypotheses gcdaddmzz2nni.1
|- M e. NN
gcdaddmzz2nni.2
|- N e. NN
gcdaddmzz2nni.3
|- K e. ZZ
Assertion gcdaddmzz2nni
|- ( M gcd N ) = ( M gcd ( N + ( K x. M ) ) )

Proof

Step Hyp Ref Expression
1 gcdaddmzz2nni.1
 |-  M e. NN
2 gcdaddmzz2nni.2
 |-  N e. NN
3 gcdaddmzz2nni.3
 |-  K e. ZZ
4 1 nnzi
 |-  M e. ZZ
5 2 nnzi
 |-  N e. ZZ
6 3 4 5 3pm3.2i
 |-  ( K e. ZZ /\ M e. ZZ /\ N e. ZZ )
7 gcdaddm
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( M gcd ( N + ( K x. M ) ) ) )
8 6 7 ax-mp
 |-  ( M gcd N ) = ( M gcd ( N + ( K x. M ) ) )