Description: The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 60gcd7e1 | ⊢ ( ; 6 0 gcd 7 ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7nn | ⊢ 7 ∈ ℕ | |
| 2 | 6nn | ⊢ 6 ∈ ℕ | |
| 3 | 2 | decnncl2 | ⊢ ; 6 0 ∈ ℕ |
| 4 | 1 3 | gcdcomnni | ⊢ ( 7 gcd ; 6 0 ) = ( ; 6 0 gcd 7 ) |
| 5 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 6 | 1nn | ⊢ 1 ∈ ℕ | |
| 7 | 5 6 | decnncl | ⊢ ; 1 1 ∈ ℕ |
| 8 | 1 | nnzi | ⊢ 7 ∈ ℤ |
| 9 | 1 7 8 | gcdaddmzz2nni | ⊢ ( 7 gcd ; 1 1 ) = ( 7 gcd ( ; 1 1 + ( 7 · 7 ) ) ) |
| 10 | 7t7e49 | ⊢ ( 7 · 7 ) = ; 4 9 | |
| 11 | 10 | oveq2i | ⊢ ( ; 1 1 + ( 7 · 7 ) ) = ( ; 1 1 + ; 4 9 ) |
| 12 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 13 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
| 14 | eqid | ⊢ ; 1 1 = ; 1 1 | |
| 15 | eqid | ⊢ ; 4 9 = ; 4 9 | |
| 16 | 4cn | ⊢ 4 ∈ ℂ | |
| 17 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 18 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
| 19 | 16 17 18 | addcomli | ⊢ ( 1 + 4 ) = 5 |
| 20 | 19 | oveq1i | ⊢ ( ( 1 + 4 ) + 1 ) = ( 5 + 1 ) |
| 21 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
| 22 | 20 21 | eqtri | ⊢ ( ( 1 + 4 ) + 1 ) = 6 |
| 23 | 9cn | ⊢ 9 ∈ ℂ | |
| 24 | 9p1e10 | ⊢ ( 9 + 1 ) = ; 1 0 | |
| 25 | 23 17 24 | addcomli | ⊢ ( 1 + 9 ) = ; 1 0 |
| 26 | 5 5 12 13 14 15 22 25 | decaddc2 | ⊢ ( ; 1 1 + ; 4 9 ) = ; 6 0 |
| 27 | 11 26 | eqtri | ⊢ ( ; 1 1 + ( 7 · 7 ) ) = ; 6 0 |
| 28 | 27 | oveq2i | ⊢ ( 7 gcd ( ; 1 1 + ( 7 · 7 ) ) ) = ( 7 gcd ; 6 0 ) |
| 29 | 9 28 | eqtri | ⊢ ( 7 gcd ; 1 1 ) = ( 7 gcd ; 6 0 ) |
| 30 | 7re | ⊢ 7 ∈ ℝ | |
| 31 | 1 | nnnn0i | ⊢ 7 ∈ ℕ0 |
| 32 | 31 | dec0h | ⊢ 7 = ; 0 7 |
| 33 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 34 | 7lt9 | ⊢ 7 < 9 | |
| 35 | 9re | ⊢ 9 ∈ ℝ | |
| 36 | 30 35 | pm3.2i | ⊢ ( 7 ∈ ℝ ∧ 9 ∈ ℝ ) |
| 37 | ltle | ⊢ ( ( 7 ∈ ℝ ∧ 9 ∈ ℝ ) → ( 7 < 9 → 7 ≤ 9 ) ) | |
| 38 | 36 37 | ax-mp | ⊢ ( 7 < 9 → 7 ≤ 9 ) |
| 39 | 34 38 | ax-mp | ⊢ 7 ≤ 9 |
| 40 | 0lt1 | ⊢ 0 < 1 | |
| 41 | 33 5 31 5 39 40 | declth | ⊢ ; 0 7 < ; 1 1 |
| 42 | 32 41 | eqbrtri | ⊢ 7 < ; 1 1 |
| 43 | ltne | ⊢ ( ( 7 ∈ ℝ ∧ 7 < ; 1 1 ) → ; 1 1 ≠ 7 ) | |
| 44 | 30 42 43 | mp2an | ⊢ ; 1 1 ≠ 7 |
| 45 | necom | ⊢ ( 7 ≠ ; 1 1 ↔ ; 1 1 ≠ 7 ) | |
| 46 | 44 45 | mpbir | ⊢ 7 ≠ ; 1 1 |
| 47 | 7prm | ⊢ 7 ∈ ℙ | |
| 48 | 11prm | ⊢ ; 1 1 ∈ ℙ | |
| 49 | prmrp | ⊢ ( ( 7 ∈ ℙ ∧ ; 1 1 ∈ ℙ ) → ( ( 7 gcd ; 1 1 ) = 1 ↔ 7 ≠ ; 1 1 ) ) | |
| 50 | 47 48 49 | mp2an | ⊢ ( ( 7 gcd ; 1 1 ) = 1 ↔ 7 ≠ ; 1 1 ) |
| 51 | 46 50 | mpbir | ⊢ ( 7 gcd ; 1 1 ) = 1 |
| 52 | 29 51 | eqtr3i | ⊢ ( 7 gcd ; 6 0 ) = 1 |
| 53 | 4 52 | eqtr3i | ⊢ ( ; 6 0 gcd 7 ) = 1 |