Description: The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 60gcd7e1 | ⊢ ( ; 6 0 gcd 7 ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn | ⊢ 7 ∈ ℕ | |
2 | 6nn | ⊢ 6 ∈ ℕ | |
3 | 2 | decnncl2 | ⊢ ; 6 0 ∈ ℕ |
4 | 1 3 | gcdcomnni | ⊢ ( 7 gcd ; 6 0 ) = ( ; 6 0 gcd 7 ) |
5 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
6 | 1nn | ⊢ 1 ∈ ℕ | |
7 | 5 6 | decnncl | ⊢ ; 1 1 ∈ ℕ |
8 | 1 | nnzi | ⊢ 7 ∈ ℤ |
9 | 1 7 8 | gcdaddmzz2nni | ⊢ ( 7 gcd ; 1 1 ) = ( 7 gcd ( ; 1 1 + ( 7 · 7 ) ) ) |
10 | 7t7e49 | ⊢ ( 7 · 7 ) = ; 4 9 | |
11 | 10 | oveq2i | ⊢ ( ; 1 1 + ( 7 · 7 ) ) = ( ; 1 1 + ; 4 9 ) |
12 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
13 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
14 | eqid | ⊢ ; 1 1 = ; 1 1 | |
15 | eqid | ⊢ ; 4 9 = ; 4 9 | |
16 | 4cn | ⊢ 4 ∈ ℂ | |
17 | ax-1cn | ⊢ 1 ∈ ℂ | |
18 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
19 | 16 17 18 | addcomli | ⊢ ( 1 + 4 ) = 5 |
20 | 19 | oveq1i | ⊢ ( ( 1 + 4 ) + 1 ) = ( 5 + 1 ) |
21 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
22 | 20 21 | eqtri | ⊢ ( ( 1 + 4 ) + 1 ) = 6 |
23 | 9cn | ⊢ 9 ∈ ℂ | |
24 | 9p1e10 | ⊢ ( 9 + 1 ) = ; 1 0 | |
25 | 23 17 24 | addcomli | ⊢ ( 1 + 9 ) = ; 1 0 |
26 | 5 5 12 13 14 15 22 25 | decaddc2 | ⊢ ( ; 1 1 + ; 4 9 ) = ; 6 0 |
27 | 11 26 | eqtri | ⊢ ( ; 1 1 + ( 7 · 7 ) ) = ; 6 0 |
28 | 27 | oveq2i | ⊢ ( 7 gcd ( ; 1 1 + ( 7 · 7 ) ) ) = ( 7 gcd ; 6 0 ) |
29 | 9 28 | eqtri | ⊢ ( 7 gcd ; 1 1 ) = ( 7 gcd ; 6 0 ) |
30 | 7re | ⊢ 7 ∈ ℝ | |
31 | 1 | nnnn0i | ⊢ 7 ∈ ℕ0 |
32 | 31 | dec0h | ⊢ 7 = ; 0 7 |
33 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
34 | 7lt9 | ⊢ 7 < 9 | |
35 | 9re | ⊢ 9 ∈ ℝ | |
36 | 30 35 | pm3.2i | ⊢ ( 7 ∈ ℝ ∧ 9 ∈ ℝ ) |
37 | ltle | ⊢ ( ( 7 ∈ ℝ ∧ 9 ∈ ℝ ) → ( 7 < 9 → 7 ≤ 9 ) ) | |
38 | 36 37 | ax-mp | ⊢ ( 7 < 9 → 7 ≤ 9 ) |
39 | 34 38 | ax-mp | ⊢ 7 ≤ 9 |
40 | 0lt1 | ⊢ 0 < 1 | |
41 | 33 5 31 5 39 40 | declth | ⊢ ; 0 7 < ; 1 1 |
42 | 32 41 | eqbrtri | ⊢ 7 < ; 1 1 |
43 | ltne | ⊢ ( ( 7 ∈ ℝ ∧ 7 < ; 1 1 ) → ; 1 1 ≠ 7 ) | |
44 | 30 42 43 | mp2an | ⊢ ; 1 1 ≠ 7 |
45 | necom | ⊢ ( 7 ≠ ; 1 1 ↔ ; 1 1 ≠ 7 ) | |
46 | 44 45 | mpbir | ⊢ 7 ≠ ; 1 1 |
47 | 7prm | ⊢ 7 ∈ ℙ | |
48 | 11prm | ⊢ ; 1 1 ∈ ℙ | |
49 | prmrp | ⊢ ( ( 7 ∈ ℙ ∧ ; 1 1 ∈ ℙ ) → ( ( 7 gcd ; 1 1 ) = 1 ↔ 7 ≠ ; 1 1 ) ) | |
50 | 47 48 49 | mp2an | ⊢ ( ( 7 gcd ; 1 1 ) = 1 ↔ 7 ≠ ; 1 1 ) |
51 | 46 50 | mpbir | ⊢ ( 7 gcd ; 1 1 ) = 1 |
52 | 29 51 | eqtr3i | ⊢ ( 7 gcd ; 6 0 ) = 1 |
53 | 4 52 | eqtr3i | ⊢ ( ; 6 0 gcd 7 ) = 1 |