Step |
Hyp |
Ref |
Expression |
1 |
|
8nn |
|- 8 e. NN |
2 |
|
4nn |
|- 4 e. NN |
3 |
|
5nn0 |
|- 5 e. NN0 |
4 |
|
2nn |
|- 2 e. NN |
5 |
3 4
|
decnncl |
|- ; 5 2 e. NN |
6 |
5
|
nnzi |
|- ; 5 2 e. ZZ |
7 |
1 2 6
|
gcdaddmzz2nncomi |
|- ( 8 gcd 4 ) = ( 8 gcd ( ( ; 5 2 x. 8 ) + 4 ) ) |
8 |
|
4nn0 |
|- 4 e. NN0 |
9 |
|
1nn0 |
|- 1 e. NN0 |
10 |
8 9
|
deccl |
|- ; 4 1 e. NN0 |
11 |
|
6nn0 |
|- 6 e. NN0 |
12 |
|
0nn0 |
|- 0 e. NN0 |
13 |
|
eqid |
|- ; ; 4 1 6 = ; ; 4 1 6 |
14 |
8
|
dec0h |
|- 4 = ; 0 4 |
15 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
16 |
10
|
nn0cni |
|- ; 4 1 e. CC |
17 |
16
|
addridi |
|- ( ; 4 1 + 0 ) = ; 4 1 |
18 |
8 9 15 17
|
decsuc |
|- ( ( ; 4 1 + 0 ) + 1 ) = ; 4 2 |
19 |
|
6p4e10 |
|- ( 6 + 4 ) = ; 1 0 |
20 |
10 11 12 8 13 14 18 19
|
decaddc2 |
|- ( ; ; 4 1 6 + 4 ) = ; ; 4 2 0 |
21 |
|
8nn0 |
|- 8 e. NN0 |
22 |
|
2nn0 |
|- 2 e. NN0 |
23 |
|
eqid |
|- ; 5 2 = ; 5 2 |
24 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
25 |
|
8t5e40 |
|- ( 8 x. 5 ) = ; 4 0 |
26 |
8 12 24 25
|
decsuc |
|- ( ( 8 x. 5 ) + 1 ) = ; 4 1 |
27 |
|
8t2e16 |
|- ( 8 x. 2 ) = ; 1 6 |
28 |
21 3 22 23 11 9 26 27
|
decmul2c |
|- ( 8 x. ; 5 2 ) = ; ; 4 1 6 |
29 |
1 5
|
mulcomnni |
|- ( 8 x. ; 5 2 ) = ( ; 5 2 x. 8 ) |
30 |
28 29
|
eqtr3i |
|- ; ; 4 1 6 = ( ; 5 2 x. 8 ) |
31 |
30
|
oveq1i |
|- ( ; ; 4 1 6 + 4 ) = ( ( ; 5 2 x. 8 ) + 4 ) |
32 |
20 31
|
eqtr3i |
|- ; ; 4 2 0 = ( ( ; 5 2 x. 8 ) + 4 ) |
33 |
32
|
oveq2i |
|- ( 8 gcd ; ; 4 2 0 ) = ( 8 gcd ( ( ; 5 2 x. 8 ) + 4 ) ) |
34 |
7 33
|
eqtr4i |
|- ( 8 gcd 4 ) = ( 8 gcd ; ; 4 2 0 ) |
35 |
1 2
|
gcdcomnni |
|- ( 8 gcd 4 ) = ( 4 gcd 8 ) |
36 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
37 |
36
|
oveq2i |
|- ( 4 gcd ( 4 x. 2 ) ) = ( 4 gcd 8 ) |
38 |
2 4
|
gcdmultiplei |
|- ( 4 gcd ( 4 x. 2 ) ) = 4 |
39 |
37 38
|
eqtr3i |
|- ( 4 gcd 8 ) = 4 |
40 |
35 39
|
eqtri |
|- ( 8 gcd 4 ) = 4 |
41 |
8 4
|
decnncl |
|- ; 4 2 e. NN |
42 |
41
|
decnncl2 |
|- ; ; 4 2 0 e. NN |
43 |
1 42
|
gcdcomnni |
|- ( 8 gcd ; ; 4 2 0 ) = ( ; ; 4 2 0 gcd 8 ) |
44 |
34 40 43
|
3eqtr3ri |
|- ( ; ; 4 2 0 gcd 8 ) = 4 |