Step |
Hyp |
Ref |
Expression |
1 |
|
lcmeprodgcdi.1 |
|- M e. NN |
2 |
|
lcmeprodgcdi.2 |
|- N e. NN |
3 |
|
lcmeprodgcdi.3 |
|- G e. NN |
4 |
|
lcmeprodgcdi.4 |
|- H e. NN |
5 |
|
lcmeprodgcdi.5 |
|- ( M gcd N ) = G |
6 |
|
lcmeprodgcdi.6 |
|- ( G x. H ) = A |
7 |
|
lcmeprodgcdi.7 |
|- ( M x. N ) = A |
8 |
5
|
oveq2i |
|- ( ( M lcm N ) x. ( M gcd N ) ) = ( ( M lcm N ) x. G ) |
9 |
|
lcmgcdnn |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( M x. N ) ) |
10 |
1 2 9
|
mp2an |
|- ( ( M lcm N ) x. ( M gcd N ) ) = ( M x. N ) |
11 |
6 7
|
eqtr4i |
|- ( G x. H ) = ( M x. N ) |
12 |
10 11
|
eqtr4i |
|- ( ( M lcm N ) x. ( M gcd N ) ) = ( G x. H ) |
13 |
3 4
|
mulcomnni |
|- ( G x. H ) = ( H x. G ) |
14 |
12 13
|
eqtri |
|- ( ( M lcm N ) x. ( M gcd N ) ) = ( H x. G ) |
15 |
8 14
|
eqtr3i |
|- ( ( M lcm N ) x. G ) = ( H x. G ) |
16 |
1
|
nnzi |
|- M e. ZZ |
17 |
2
|
nnzi |
|- N e. ZZ |
18 |
16 17
|
pm3.2i |
|- ( M e. ZZ /\ N e. ZZ ) |
19 |
|
lcmcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
20 |
18 19
|
ax-mp |
|- ( M lcm N ) e. NN0 |
21 |
20
|
nn0cni |
|- ( M lcm N ) e. CC |
22 |
4
|
nncni |
|- H e. CC |
23 |
3
|
nncni |
|- G e. CC |
24 |
3
|
nnne0i |
|- G =/= 0 |
25 |
23 24
|
pm3.2i |
|- ( G e. CC /\ G =/= 0 ) |
26 |
21 22 25
|
3pm3.2i |
|- ( ( M lcm N ) e. CC /\ H e. CC /\ ( G e. CC /\ G =/= 0 ) ) |
27 |
|
mulcan2 |
|- ( ( ( M lcm N ) e. CC /\ H e. CC /\ ( G e. CC /\ G =/= 0 ) ) -> ( ( ( M lcm N ) x. G ) = ( H x. G ) <-> ( M lcm N ) = H ) ) |
28 |
26 27
|
ax-mp |
|- ( ( ( M lcm N ) x. G ) = ( H x. G ) <-> ( M lcm N ) = H ) |
29 |
15 28
|
mpbi |
|- ( M lcm N ) = H |