Metamath Proof Explorer


Theorem lcmeprodgcdi

Description: Calculate the least common multiple of two natural numbers. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Hypotheses lcmeprodgcdi.1 M
lcmeprodgcdi.2 N
lcmeprodgcdi.3 G
lcmeprodgcdi.4 H
lcmeprodgcdi.5 MgcdN=G
lcmeprodgcdi.6 GH=A
lcmeprodgcdi.7 M N=A
Assertion lcmeprodgcdi MlcmN=H

Proof

Step Hyp Ref Expression
1 lcmeprodgcdi.1 M
2 lcmeprodgcdi.2 N
3 lcmeprodgcdi.3 G
4 lcmeprodgcdi.4 H
5 lcmeprodgcdi.5 MgcdN=G
6 lcmeprodgcdi.6 GH=A
7 lcmeprodgcdi.7 M N=A
8 5 oveq2i MlcmNMgcdN=MlcmNG
9 lcmgcdnn MNMlcmNMgcdN= M N
10 1 2 9 mp2an MlcmNMgcdN= M N
11 6 7 eqtr4i GH= M N
12 10 11 eqtr4i MlcmNMgcdN=GH
13 3 4 mulcomnni GH=HG
14 12 13 eqtri MlcmNMgcdN=HG
15 8 14 eqtr3i MlcmNG=HG
16 1 nnzi M
17 2 nnzi N
18 16 17 pm3.2i MN
19 lcmcl MNMlcmN0
20 18 19 ax-mp MlcmN0
21 20 nn0cni MlcmN
22 4 nncni H
23 3 nncni G
24 3 nnne0i G0
25 23 24 pm3.2i GG0
26 21 22 25 3pm3.2i MlcmNHGG0
27 mulcan2 MlcmNHGG0MlcmNG=HGMlcmN=H
28 26 27 ax-mp MlcmNG=HGMlcmN=H
29 15 28 mpbi MlcmN=H