Metamath Proof Explorer


Theorem 12lcm5e60

Description: The lcm of 12 and 5 is 60. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion 12lcm5e60 12lcm5=60

Proof

Step Hyp Ref Expression
1 1nn0 10
2 2nn 2
3 1 2 decnncl 12
4 5nn 5
5 1nn 1
6 6nn 6
7 6 decnncl2 60
8 12gcd5e1 12gcd5=1
9 6nn0 60
10 0nn0 00
11 9 10 deccl 600
12 11 nn0cni 60
13 12 mullidi 160=60
14 5nn0 50
15 2nn0 20
16 eqid 12=12
17 5cn 5
18 17 mullidi 15=5
19 18 oveq1i 15+1=5+1
20 5p1e6 5+1=6
21 19 20 eqtri 15+1=6
22 2cn 2
23 5t2e10 52=10
24 17 22 23 mulcomli 25=10
25 14 1 15 16 10 1 21 24 decmul1c 125=60
26 3 4 5 7 8 13 25 lcmeprodgcdi 12lcm5=60