Description: The lcm of 12 and 5 is 60. (Contributed by metakunt, 25-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 12lcm5e60 | ⊢ ( ; 1 2 lcm 5 ) = ; 6 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 2 | 2nn | ⊢ 2 ∈ ℕ | |
| 3 | 1 2 | decnncl | ⊢ ; 1 2 ∈ ℕ |
| 4 | 5nn | ⊢ 5 ∈ ℕ | |
| 5 | 1nn | ⊢ 1 ∈ ℕ | |
| 6 | 6nn | ⊢ 6 ∈ ℕ | |
| 7 | 6 | decnncl2 | ⊢ ; 6 0 ∈ ℕ |
| 8 | 12gcd5e1 | ⊢ ( ; 1 2 gcd 5 ) = 1 | |
| 9 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 10 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 11 | 9 10 | deccl | ⊢ ; 6 0 ∈ ℕ0 |
| 12 | 11 | nn0cni | ⊢ ; 6 0 ∈ ℂ |
| 13 | 12 | mullidi | ⊢ ( 1 · ; 6 0 ) = ; 6 0 |
| 14 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 15 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 16 | eqid | ⊢ ; 1 2 = ; 1 2 | |
| 17 | 5cn | ⊢ 5 ∈ ℂ | |
| 18 | 17 | mullidi | ⊢ ( 1 · 5 ) = 5 |
| 19 | 18 | oveq1i | ⊢ ( ( 1 · 5 ) + 1 ) = ( 5 + 1 ) |
| 20 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
| 21 | 19 20 | eqtri | ⊢ ( ( 1 · 5 ) + 1 ) = 6 |
| 22 | 2cn | ⊢ 2 ∈ ℂ | |
| 23 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
| 24 | 17 22 23 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
| 25 | 14 1 15 16 10 1 21 24 | decmul1c | ⊢ ( ; 1 2 · 5 ) = ; 6 0 |
| 26 | 3 4 5 7 8 13 25 | lcmeprodgcdi | ⊢ ( ; 1 2 lcm 5 ) = ; 6 0 |