| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmeprodgcdi.1 |
⊢ 𝑀 ∈ ℕ |
| 2 |
|
lcmeprodgcdi.2 |
⊢ 𝑁 ∈ ℕ |
| 3 |
|
lcmeprodgcdi.3 |
⊢ 𝐺 ∈ ℕ |
| 4 |
|
lcmeprodgcdi.4 |
⊢ 𝐻 ∈ ℕ |
| 5 |
|
lcmeprodgcdi.5 |
⊢ ( 𝑀 gcd 𝑁 ) = 𝐺 |
| 6 |
|
lcmeprodgcdi.6 |
⊢ ( 𝐺 · 𝐻 ) = 𝐴 |
| 7 |
|
lcmeprodgcdi.7 |
⊢ ( 𝑀 · 𝑁 ) = 𝐴 |
| 8 |
5
|
oveq2i |
⊢ ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( ( 𝑀 lcm 𝑁 ) · 𝐺 ) |
| 9 |
|
lcmgcdnn |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 · 𝑁 ) ) |
| 10 |
1 2 9
|
mp2an |
⊢ ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 · 𝑁 ) |
| 11 |
6 7
|
eqtr4i |
⊢ ( 𝐺 · 𝐻 ) = ( 𝑀 · 𝑁 ) |
| 12 |
10 11
|
eqtr4i |
⊢ ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( 𝐺 · 𝐻 ) |
| 13 |
3 4
|
mulcomnni |
⊢ ( 𝐺 · 𝐻 ) = ( 𝐻 · 𝐺 ) |
| 14 |
12 13
|
eqtri |
⊢ ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( 𝐻 · 𝐺 ) |
| 15 |
8 14
|
eqtr3i |
⊢ ( ( 𝑀 lcm 𝑁 ) · 𝐺 ) = ( 𝐻 · 𝐺 ) |
| 16 |
1
|
nnzi |
⊢ 𝑀 ∈ ℤ |
| 17 |
2
|
nnzi |
⊢ 𝑁 ∈ ℤ |
| 18 |
16 17
|
pm3.2i |
⊢ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) |
| 19 |
|
lcmcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) |
| 20 |
18 19
|
ax-mp |
⊢ ( 𝑀 lcm 𝑁 ) ∈ ℕ0 |
| 21 |
20
|
nn0cni |
⊢ ( 𝑀 lcm 𝑁 ) ∈ ℂ |
| 22 |
4
|
nncni |
⊢ 𝐻 ∈ ℂ |
| 23 |
3
|
nncni |
⊢ 𝐺 ∈ ℂ |
| 24 |
3
|
nnne0i |
⊢ 𝐺 ≠ 0 |
| 25 |
23 24
|
pm3.2i |
⊢ ( 𝐺 ∈ ℂ ∧ 𝐺 ≠ 0 ) |
| 26 |
21 22 25
|
3pm3.2i |
⊢ ( ( 𝑀 lcm 𝑁 ) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ ( 𝐺 ∈ ℂ ∧ 𝐺 ≠ 0 ) ) |
| 27 |
|
mulcan2 |
⊢ ( ( ( 𝑀 lcm 𝑁 ) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ ( 𝐺 ∈ ℂ ∧ 𝐺 ≠ 0 ) ) → ( ( ( 𝑀 lcm 𝑁 ) · 𝐺 ) = ( 𝐻 · 𝐺 ) ↔ ( 𝑀 lcm 𝑁 ) = 𝐻 ) ) |
| 28 |
26 27
|
ax-mp |
⊢ ( ( ( 𝑀 lcm 𝑁 ) · 𝐺 ) = ( 𝐻 · 𝐺 ) ↔ ( 𝑀 lcm 𝑁 ) = 𝐻 ) |
| 29 |
15 28
|
mpbi |
⊢ ( 𝑀 lcm 𝑁 ) = 𝐻 |