Step |
Hyp |
Ref |
Expression |
1 |
|
lcmeprodgcdi.1 |
⊢ 𝑀 ∈ ℕ |
2 |
|
lcmeprodgcdi.2 |
⊢ 𝑁 ∈ ℕ |
3 |
|
lcmeprodgcdi.3 |
⊢ 𝐺 ∈ ℕ |
4 |
|
lcmeprodgcdi.4 |
⊢ 𝐻 ∈ ℕ |
5 |
|
lcmeprodgcdi.5 |
⊢ ( 𝑀 gcd 𝑁 ) = 𝐺 |
6 |
|
lcmeprodgcdi.6 |
⊢ ( 𝐺 · 𝐻 ) = 𝐴 |
7 |
|
lcmeprodgcdi.7 |
⊢ ( 𝑀 · 𝑁 ) = 𝐴 |
8 |
5
|
oveq2i |
⊢ ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( ( 𝑀 lcm 𝑁 ) · 𝐺 ) |
9 |
|
lcmgcdnn |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 · 𝑁 ) ) |
10 |
1 2 9
|
mp2an |
⊢ ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 · 𝑁 ) |
11 |
6 7
|
eqtr4i |
⊢ ( 𝐺 · 𝐻 ) = ( 𝑀 · 𝑁 ) |
12 |
10 11
|
eqtr4i |
⊢ ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( 𝐺 · 𝐻 ) |
13 |
3 4
|
mulcomnni |
⊢ ( 𝐺 · 𝐻 ) = ( 𝐻 · 𝐺 ) |
14 |
12 13
|
eqtri |
⊢ ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( 𝐻 · 𝐺 ) |
15 |
8 14
|
eqtr3i |
⊢ ( ( 𝑀 lcm 𝑁 ) · 𝐺 ) = ( 𝐻 · 𝐺 ) |
16 |
1
|
nnzi |
⊢ 𝑀 ∈ ℤ |
17 |
2
|
nnzi |
⊢ 𝑁 ∈ ℤ |
18 |
16 17
|
pm3.2i |
⊢ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) |
19 |
|
lcmcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) |
20 |
18 19
|
ax-mp |
⊢ ( 𝑀 lcm 𝑁 ) ∈ ℕ0 |
21 |
20
|
nn0cni |
⊢ ( 𝑀 lcm 𝑁 ) ∈ ℂ |
22 |
4
|
nncni |
⊢ 𝐻 ∈ ℂ |
23 |
3
|
nncni |
⊢ 𝐺 ∈ ℂ |
24 |
3
|
nnne0i |
⊢ 𝐺 ≠ 0 |
25 |
23 24
|
pm3.2i |
⊢ ( 𝐺 ∈ ℂ ∧ 𝐺 ≠ 0 ) |
26 |
21 22 25
|
3pm3.2i |
⊢ ( ( 𝑀 lcm 𝑁 ) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ ( 𝐺 ∈ ℂ ∧ 𝐺 ≠ 0 ) ) |
27 |
|
mulcan2 |
⊢ ( ( ( 𝑀 lcm 𝑁 ) ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ ( 𝐺 ∈ ℂ ∧ 𝐺 ≠ 0 ) ) → ( ( ( 𝑀 lcm 𝑁 ) · 𝐺 ) = ( 𝐻 · 𝐺 ) ↔ ( 𝑀 lcm 𝑁 ) = 𝐻 ) ) |
28 |
26 27
|
ax-mp |
⊢ ( ( ( 𝑀 lcm 𝑁 ) · 𝐺 ) = ( 𝐻 · 𝐺 ) ↔ ( 𝑀 lcm 𝑁 ) = 𝐻 ) |
29 |
15 28
|
mpbi |
⊢ ( 𝑀 lcm 𝑁 ) = 𝐻 |