Description: The lcm of 12 and 5 is 60. (Contributed by metakunt, 25-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 12lcm5e60 | |- ( ; 1 2 lcm 5 ) = ; 6 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 | |- 1 e. NN0 |
|
2 | 2nn | |- 2 e. NN |
|
3 | 1 2 | decnncl | |- ; 1 2 e. NN |
4 | 5nn | |- 5 e. NN |
|
5 | 1nn | |- 1 e. NN |
|
6 | 6nn | |- 6 e. NN |
|
7 | 6 | decnncl2 | |- ; 6 0 e. NN |
8 | 12gcd5e1 | |- ( ; 1 2 gcd 5 ) = 1 |
|
9 | 6nn0 | |- 6 e. NN0 |
|
10 | 0nn0 | |- 0 e. NN0 |
|
11 | 9 10 | deccl | |- ; 6 0 e. NN0 |
12 | 11 | nn0cni | |- ; 6 0 e. CC |
13 | 12 | mulid2i | |- ( 1 x. ; 6 0 ) = ; 6 0 |
14 | 5nn0 | |- 5 e. NN0 |
|
15 | 2nn0 | |- 2 e. NN0 |
|
16 | eqid | |- ; 1 2 = ; 1 2 |
|
17 | 5cn | |- 5 e. CC |
|
18 | 17 | mulid2i | |- ( 1 x. 5 ) = 5 |
19 | 18 | oveq1i | |- ( ( 1 x. 5 ) + 1 ) = ( 5 + 1 ) |
20 | 5p1e6 | |- ( 5 + 1 ) = 6 |
|
21 | 19 20 | eqtri | |- ( ( 1 x. 5 ) + 1 ) = 6 |
22 | 2cn | |- 2 e. CC |
|
23 | 5t2e10 | |- ( 5 x. 2 ) = ; 1 0 |
|
24 | 17 22 23 | mulcomli | |- ( 2 x. 5 ) = ; 1 0 |
25 | 14 1 15 16 10 1 21 24 | decmul1c | |- ( ; 1 2 x. 5 ) = ; 6 0 |
26 | 3 4 5 7 8 13 25 | lcmeprodgcdi | |- ( ; 1 2 lcm 5 ) = ; 6 0 |