Description: The lcm of 12 and 5 is 60. (Contributed by metakunt, 25-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 12lcm5e60 | |- ( ; 1 2 lcm 5 ) = ; 6 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 | |- 1 e. NN0 |
|
| 2 | 2nn | |- 2 e. NN |
|
| 3 | 1 2 | decnncl | |- ; 1 2 e. NN |
| 4 | 5nn | |- 5 e. NN |
|
| 5 | 1nn | |- 1 e. NN |
|
| 6 | 6nn | |- 6 e. NN |
|
| 7 | 6 | decnncl2 | |- ; 6 0 e. NN |
| 8 | 12gcd5e1 | |- ( ; 1 2 gcd 5 ) = 1 |
|
| 9 | 6nn0 | |- 6 e. NN0 |
|
| 10 | 0nn0 | |- 0 e. NN0 |
|
| 11 | 9 10 | deccl | |- ; 6 0 e. NN0 |
| 12 | 11 | nn0cni | |- ; 6 0 e. CC |
| 13 | 12 | mullidi | |- ( 1 x. ; 6 0 ) = ; 6 0 |
| 14 | 5nn0 | |- 5 e. NN0 |
|
| 15 | 2nn0 | |- 2 e. NN0 |
|
| 16 | eqid | |- ; 1 2 = ; 1 2 |
|
| 17 | 5cn | |- 5 e. CC |
|
| 18 | 17 | mullidi | |- ( 1 x. 5 ) = 5 |
| 19 | 18 | oveq1i | |- ( ( 1 x. 5 ) + 1 ) = ( 5 + 1 ) |
| 20 | 5p1e6 | |- ( 5 + 1 ) = 6 |
|
| 21 | 19 20 | eqtri | |- ( ( 1 x. 5 ) + 1 ) = 6 |
| 22 | 2cn | |- 2 e. CC |
|
| 23 | 5t2e10 | |- ( 5 x. 2 ) = ; 1 0 |
|
| 24 | 17 22 23 | mulcomli | |- ( 2 x. 5 ) = ; 1 0 |
| 25 | 14 1 15 16 10 1 21 24 | decmul1c | |- ( ; 1 2 x. 5 ) = ; 6 0 |
| 26 | 3 4 5 7 8 13 25 | lcmeprodgcdi | |- ( ; 1 2 lcm 5 ) = ; 6 0 |