Metamath Proof Explorer


Theorem 8t5e40

Description: 8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015) (Revised by AV, 6-Sep-2021)

Ref Expression
Assertion 8t5e40
|- ( 8 x. 5 ) = ; 4 0

Proof

Step Hyp Ref Expression
1 8nn0
 |-  8 e. NN0
2 4nn0
 |-  4 e. NN0
3 df-5
 |-  5 = ( 4 + 1 )
4 8t4e32
 |-  ( 8 x. 4 ) = ; 3 2
5 3nn0
 |-  3 e. NN0
6 2nn0
 |-  2 e. NN0
7 eqid
 |-  ; 3 2 = ; 3 2
8 3p1e4
 |-  ( 3 + 1 ) = 4
9 8cn
 |-  8 e. CC
10 2cn
 |-  2 e. CC
11 8p2e10
 |-  ( 8 + 2 ) = ; 1 0
12 9 10 11 addcomli
 |-  ( 2 + 8 ) = ; 1 0
13 5 6 1 7 8 12 decaddci2
 |-  ( ; 3 2 + 8 ) = ; 4 0
14 1 2 3 4 13 4t3lem
 |-  ( 8 x. 5 ) = ; 4 0