Metamath Proof Explorer


Theorem abl32

Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablcom.b
|- B = ( Base ` G )
ablcom.p
|- .+ = ( +g ` G )
abl32.g
|- ( ph -> G e. Abel )
abl32.x
|- ( ph -> X e. B )
abl32.y
|- ( ph -> Y e. B )
abl32.z
|- ( ph -> Z e. B )
Assertion abl32
|- ( ph -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ Z ) .+ Y ) )

Proof

Step Hyp Ref Expression
1 ablcom.b
 |-  B = ( Base ` G )
2 ablcom.p
 |-  .+ = ( +g ` G )
3 abl32.g
 |-  ( ph -> G e. Abel )
4 abl32.x
 |-  ( ph -> X e. B )
5 abl32.y
 |-  ( ph -> Y e. B )
6 abl32.z
 |-  ( ph -> Z e. B )
7 ablcmn
 |-  ( G e. Abel -> G e. CMnd )
8 3 7 syl
 |-  ( ph -> G e. CMnd )
9 1 2 cmn32
 |-  ( ( G e. CMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ Z ) .+ Y ) )
10 8 4 5 6 9 syl13anc
 |-  ( ph -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ Z ) .+ Y ) )