Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015) (Revised by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablcom.b | |- B = ( Base ` G ) |
|
ablcom.p | |- .+ = ( +g ` G ) |
||
abl32.g | |- ( ph -> G e. Abel ) |
||
abl32.x | |- ( ph -> X e. B ) |
||
abl32.y | |- ( ph -> Y e. B ) |
||
abl32.z | |- ( ph -> Z e. B ) |
||
Assertion | abl32 | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ Z ) .+ Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcom.b | |- B = ( Base ` G ) |
|
2 | ablcom.p | |- .+ = ( +g ` G ) |
|
3 | abl32.g | |- ( ph -> G e. Abel ) |
|
4 | abl32.x | |- ( ph -> X e. B ) |
|
5 | abl32.y | |- ( ph -> Y e. B ) |
|
6 | abl32.z | |- ( ph -> Z e. B ) |
|
7 | ablcmn | |- ( G e. Abel -> G e. CMnd ) |
|
8 | 3 7 | syl | |- ( ph -> G e. CMnd ) |
9 | 1 2 | cmn32 | |- ( ( G e. CMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ Z ) .+ Y ) ) |
10 | 8 4 5 6 9 | syl13anc | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ Z ) .+ Y ) ) |