Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablcom.b | |- B = ( Base ` G ) | |
| ablcom.p | |- .+ = ( +g ` G ) | ||
| abl32.g | |- ( ph -> G e. Abel ) | ||
| abl32.x | |- ( ph -> X e. B ) | ||
| abl32.y | |- ( ph -> Y e. B ) | ||
| abl32.z | |- ( ph -> Z e. B ) | ||
| Assertion | abl32 | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ Z ) .+ Y ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ablcom.b | |- B = ( Base ` G ) | |
| 2 | ablcom.p | |- .+ = ( +g ` G ) | |
| 3 | abl32.g | |- ( ph -> G e. Abel ) | |
| 4 | abl32.x | |- ( ph -> X e. B ) | |
| 5 | abl32.y | |- ( ph -> Y e. B ) | |
| 6 | abl32.z | |- ( ph -> Z e. B ) | |
| 7 | ablcmn | |- ( G e. Abel -> G e. CMnd ) | |
| 8 | 3 7 | syl | |- ( ph -> G e. CMnd ) | 
| 9 | 1 2 | cmn32 | |- ( ( G e. CMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ Z ) .+ Y ) ) | 
| 10 | 8 4 5 6 9 | syl13anc | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ Z ) .+ Y ) ) |