Metamath Proof Explorer
Description: Commutative/associative law for Abelian groups. (Contributed by Stefan
O'Rear, 10-Apr-2015) (Revised by Mario Carneiro, 21-Apr-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ablcom.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
ablcom.p |
⊢ + = ( +g ‘ 𝐺 ) |
|
|
abl32.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
|
|
abl32.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
abl32.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
abl32.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
|
Assertion |
abl32 |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑍 ) + 𝑌 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablcom.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
ablcom.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
abl32.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 4 |
|
abl32.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
abl32.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
abl32.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 7 |
|
ablcmn |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) |
| 8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 9 |
1 2
|
cmn32 |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑍 ) + 𝑌 ) ) |
| 10 |
8 4 5 6 9
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑍 ) + 𝑌 ) ) |