Metamath Proof Explorer


Theorem abscli

Description: Real closure of absolute value. (Contributed by NM, 2-Aug-1999)

Ref Expression
Hypothesis absvalsqi.1
|- A e. CC
Assertion abscli
|- ( abs ` A ) e. RR

Proof

Step Hyp Ref Expression
1 absvalsqi.1
 |-  A e. CC
2 abscl
 |-  ( A e. CC -> ( abs ` A ) e. RR )
3 1 2 ax-mp
 |-  ( abs ` A ) e. RR