Metamath Proof Explorer


Theorem absge0i

Description: Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999)

Ref Expression
Hypothesis absvalsqi.1
|- A e. CC
Assertion absge0i
|- 0 <_ ( abs ` A )

Proof

Step Hyp Ref Expression
1 absvalsqi.1
 |-  A e. CC
2 absge0
 |-  ( A e. CC -> 0 <_ ( abs ` A ) )
3 1 2 ax-mp
 |-  0 <_ ( abs ` A )