| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn |  |-  ( C e. ZZ -> C e. CC ) | 
						
							| 2 | 1 | 3ad2ant3 |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> C e. CC ) | 
						
							| 3 | 2 | negnegd |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> -u -u C = C ) | 
						
							| 4 | 3 | oveq2d |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B - -u -u C ) = ( B - C ) ) | 
						
							| 5 | 4 | breq2d |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( B - -u -u C ) <-> A || ( B - C ) ) ) | 
						
							| 6 | 5 | biimpd |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( B - -u -u C ) -> A || ( B - C ) ) ) | 
						
							| 7 | 6 | orim2d |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A || ( B - -u C ) \/ A || ( B - -u -u C ) ) -> ( A || ( B - -u C ) \/ A || ( B - C ) ) ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( A || ( B - -u C ) \/ A || ( B - -u -u C ) ) ) -> ( A || ( B - -u C ) \/ A || ( B - C ) ) ) | 
						
							| 9 | 8 | orcomd |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( A || ( B - -u C ) \/ A || ( B - -u -u C ) ) ) -> ( A || ( B - C ) \/ A || ( B - -u C ) ) ) |