Metamath Proof Explorer


Theorem acongneg2

Description: Negate right side of alternating congruence. Makes essential use of the "alternating" part. (Contributed by Stefan O'Rear, 3-Oct-2014)

Ref Expression
Assertion acongneg2 ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝐴 ∥ ( 𝐵 − - 𝐶 ) ∨ 𝐴 ∥ ( 𝐵 − - - 𝐶 ) ) ) → ( 𝐴 ∥ ( 𝐵𝐶 ) ∨ 𝐴 ∥ ( 𝐵 − - 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 zcn ( 𝐶 ∈ ℤ → 𝐶 ∈ ℂ )
2 1 3ad2ant3 ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℂ )
3 2 negnegd ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → - - 𝐶 = 𝐶 )
4 3 oveq2d ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 − - - 𝐶 ) = ( 𝐵𝐶 ) )
5 4 breq2d ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐵 − - - 𝐶 ) ↔ 𝐴 ∥ ( 𝐵𝐶 ) ) )
6 5 biimpd ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐵 − - - 𝐶 ) → 𝐴 ∥ ( 𝐵𝐶 ) ) )
7 6 orim2d ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 ∥ ( 𝐵 − - 𝐶 ) ∨ 𝐴 ∥ ( 𝐵 − - - 𝐶 ) ) → ( 𝐴 ∥ ( 𝐵 − - 𝐶 ) ∨ 𝐴 ∥ ( 𝐵𝐶 ) ) ) )
8 7 imp ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝐴 ∥ ( 𝐵 − - 𝐶 ) ∨ 𝐴 ∥ ( 𝐵 − - - 𝐶 ) ) ) → ( 𝐴 ∥ ( 𝐵 − - 𝐶 ) ∨ 𝐴 ∥ ( 𝐵𝐶 ) ) )
9 8 orcomd ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝐴 ∥ ( 𝐵 − - 𝐶 ) ∨ 𝐴 ∥ ( 𝐵 − - - 𝐶 ) ) ) → ( 𝐴 ∥ ( 𝐵𝐶 ) ∨ 𝐴 ∥ ( 𝐵 − - 𝐶 ) ) )