Step |
Hyp |
Ref |
Expression |
1 |
|
subgrcycl |
|- ( S SubGraph G -> ( f ( Cycles ` S ) p -> f ( Cycles ` G ) p ) ) |
2 |
1
|
anim1d |
|- ( S SubGraph G -> ( ( f ( Cycles ` S ) p /\ f =/= (/) ) -> ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
3 |
2
|
2eximdv |
|- ( S SubGraph G -> ( E. f E. p ( f ( Cycles ` S ) p /\ f =/= (/) ) -> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
4 |
3
|
con3d |
|- ( S SubGraph G -> ( -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) -> -. E. f E. p ( f ( Cycles ` S ) p /\ f =/= (/) ) ) ) |
5 |
|
subgrv |
|- ( S SubGraph G -> ( S e. _V /\ G e. _V ) ) |
6 |
|
isacycgr |
|- ( G e. _V -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
7 |
5 6
|
simpl2im |
|- ( S SubGraph G -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
8 |
5
|
simpld |
|- ( S SubGraph G -> S e. _V ) |
9 |
|
isacycgr |
|- ( S e. _V -> ( S e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` S ) p /\ f =/= (/) ) ) ) |
10 |
8 9
|
syl |
|- ( S SubGraph G -> ( S e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` S ) p /\ f =/= (/) ) ) ) |
11 |
4 7 10
|
3imtr4d |
|- ( S SubGraph G -> ( G e. AcyclicGraph -> S e. AcyclicGraph ) ) |
12 |
11
|
impcom |
|- ( ( G e. AcyclicGraph /\ S SubGraph G ) -> S e. AcyclicGraph ) |