Metamath Proof Explorer


Theorem acycgrsubgr

Description: The subgraph of an acyclic graph is also acyclic. (Contributed by BTernaryTau, 23-Oct-2023)

Ref Expression
Assertion acycgrsubgr ( ( 𝐺 ∈ AcyclicGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ AcyclicGraph )

Proof

Step Hyp Ref Expression
1 subgrcycl ( 𝑆 SubGraph 𝐺 → ( 𝑓 ( Cycles ‘ 𝑆 ) 𝑝𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ) )
2 1 anim1d ( 𝑆 SubGraph 𝐺 → ( ( 𝑓 ( Cycles ‘ 𝑆 ) 𝑝𝑓 ≠ ∅ ) → ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝𝑓 ≠ ∅ ) ) )
3 2 2eximdv ( 𝑆 SubGraph 𝐺 → ( ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝑆 ) 𝑝𝑓 ≠ ∅ ) → ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝𝑓 ≠ ∅ ) ) )
4 3 con3d ( 𝑆 SubGraph 𝐺 → ( ¬ ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝𝑓 ≠ ∅ ) → ¬ ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝑆 ) 𝑝𝑓 ≠ ∅ ) ) )
5 subgrv ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) )
6 isacycgr ( 𝐺 ∈ V → ( 𝐺 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝𝑓 ≠ ∅ ) ) )
7 5 6 simpl2im ( 𝑆 SubGraph 𝐺 → ( 𝐺 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝𝑓 ≠ ∅ ) ) )
8 5 simpld ( 𝑆 SubGraph 𝐺𝑆 ∈ V )
9 isacycgr ( 𝑆 ∈ V → ( 𝑆 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝑆 ) 𝑝𝑓 ≠ ∅ ) ) )
10 8 9 syl ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝑆 ) 𝑝𝑓 ≠ ∅ ) ) )
11 4 7 10 3imtr4d ( 𝑆 SubGraph 𝐺 → ( 𝐺 ∈ AcyclicGraph → 𝑆 ∈ AcyclicGraph ) )
12 11 impcom ( ( 𝐺 ∈ AcyclicGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ AcyclicGraph )