Step |
Hyp |
Ref |
Expression |
1 |
|
subgrcycl |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑓 ( Cycles ‘ 𝑆 ) 𝑝 → 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ) ) |
2 |
1
|
anim1d |
⊢ ( 𝑆 SubGraph 𝐺 → ( ( 𝑓 ( Cycles ‘ 𝑆 ) 𝑝 ∧ 𝑓 ≠ ∅ ) → ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
3 |
2
|
2eximdv |
⊢ ( 𝑆 SubGraph 𝐺 → ( ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝑆 ) 𝑝 ∧ 𝑓 ≠ ∅ ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
4 |
3
|
con3d |
⊢ ( 𝑆 SubGraph 𝐺 → ( ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) → ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝑆 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
5 |
|
subgrv |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) ) |
6 |
|
isacycgr |
⊢ ( 𝐺 ∈ V → ( 𝐺 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
7 |
5 6
|
simpl2im |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝐺 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
8 |
5
|
simpld |
⊢ ( 𝑆 SubGraph 𝐺 → 𝑆 ∈ V ) |
9 |
|
isacycgr |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝑆 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝑆 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
11 |
4 7 10
|
3imtr4d |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝐺 ∈ AcyclicGraph → 𝑆 ∈ AcyclicGraph ) ) |
12 |
11
|
impcom |
⊢ ( ( 𝐺 ∈ AcyclicGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ AcyclicGraph ) |