Metamath Proof Explorer


Theorem add12d

Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addd.1
|- ( ph -> A e. CC )
addd.2
|- ( ph -> B e. CC )
addd.3
|- ( ph -> C e. CC )
Assertion add12d
|- ( ph -> ( A + ( B + C ) ) = ( B + ( A + C ) ) )

Proof

Step Hyp Ref Expression
1 addd.1
 |-  ( ph -> A e. CC )
2 addd.2
 |-  ( ph -> B e. CC )
3 addd.3
 |-  ( ph -> C e. CC )
4 add12
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( B + C ) ) = ( B + ( A + C ) ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( A + ( B + C ) ) = ( B + ( A + C ) ) )