Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | addd.1 | |- ( ph -> A e. CC ) |
|
addd.2 | |- ( ph -> B e. CC ) |
||
addd.3 | |- ( ph -> C e. CC ) |
||
Assertion | add12d | |- ( ph -> ( A + ( B + C ) ) = ( B + ( A + C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addd.1 | |- ( ph -> A e. CC ) |
|
2 | addd.2 | |- ( ph -> B e. CC ) |
|
3 | addd.3 | |- ( ph -> C e. CC ) |
|
4 | add12 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( B + C ) ) = ( B + ( A + C ) ) ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A + ( B + C ) ) = ( B + ( A + C ) ) ) |