| Step |
Hyp |
Ref |
Expression |
| 1 |
|
add1cncf.a |
|- ( ph -> A e. CC ) |
| 2 |
|
add1cncf.f |
|- F = ( x e. CC |-> ( x + A ) ) |
| 3 |
|
ssid |
|- CC C_ CC |
| 4 |
|
cncfmptid |
|- ( ( CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) |
| 5 |
3 3 4
|
mp2an |
|- ( x e. CC |-> x ) e. ( CC -cn-> CC ) |
| 6 |
5
|
a1i |
|- ( ph -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) |
| 7 |
|
id |
|- ( A e. CC -> A e. CC ) |
| 8 |
3
|
a1i |
|- ( A e. CC -> CC C_ CC ) |
| 9 |
|
cncfmptc |
|- ( ( A e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
| 10 |
7 8 8 9
|
syl3anc |
|- ( A e. CC -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
| 11 |
1 10
|
syl |
|- ( ph -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
| 12 |
6 11
|
addcncf |
|- ( ph -> ( x e. CC |-> ( x + A ) ) e. ( CC -cn-> CC ) ) |
| 13 |
2 12
|
eqeltrid |
|- ( ph -> F e. ( CC -cn-> CC ) ) |