| Step |
Hyp |
Ref |
Expression |
| 1 |
|
add2cncf.a |
|- ( ph -> A e. CC ) |
| 2 |
|
add2cncf.f |
|- F = ( x e. CC |-> ( A + x ) ) |
| 3 |
|
ssid |
|- CC C_ CC |
| 4 |
3
|
a1i |
|- ( A e. CC -> CC C_ CC ) |
| 5 |
|
cncfmptc |
|- ( ( A e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
| 6 |
4 4 5
|
mpd3an23 |
|- ( A e. CC -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
| 7 |
1 6
|
syl |
|- ( ph -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
| 8 |
|
cncfmptid |
|- ( ( CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) |
| 9 |
3 3 8
|
mp2an |
|- ( x e. CC |-> x ) e. ( CC -cn-> CC ) |
| 10 |
9
|
a1i |
|- ( ph -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) |
| 11 |
7 10
|
addcncf |
|- ( ph -> ( x e. CC |-> ( A + x ) ) e. ( CC -cn-> CC ) ) |
| 12 |
2 11
|
eqeltrid |
|- ( ph -> F e. ( CC -cn-> CC ) ) |