Metamath Proof Explorer


Theorem add2cncf

Description: Addition to a constant is a continuous function. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses add2cncf.a φA
add2cncf.f F=xA+x
Assertion add2cncf φF:cn

Proof

Step Hyp Ref Expression
1 add2cncf.a φA
2 add2cncf.f F=xA+x
3 ssid
4 3 a1i A
5 cncfmptc AxA:cn
6 4 4 5 mpd3an23 AxA:cn
7 1 6 syl φxA:cn
8 cncfmptid xx:cn
9 3 3 8 mp2an xx:cn
10 9 a1i φxx:cn
11 7 10 addcncf φxA+x:cn
12 2 11 eqeltrid φF:cn