| Step |
Hyp |
Ref |
Expression |
| 1 |
|
add2cncf.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
add2cncf.f |
⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ ( 𝐴 + 𝑥 ) ) |
| 3 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 4 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ℂ ⊆ ℂ ) |
| 5 |
|
cncfmptc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 6 |
4 4 5
|
mpd3an23 |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 8 |
|
cncfmptid |
⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 9 |
3 3 8
|
mp2an |
⊢ ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 11 |
7 10
|
addcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝐴 + 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 12 |
2 11
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |