Metamath Proof Explorer


Theorem addge02

Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 27-Jul-2005)

Ref Expression
Assertion addge02
|- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ B <-> A <_ ( B + A ) ) )

Proof

Step Hyp Ref Expression
1 addge01
 |-  ( ( A e. RR /\ B e. RR ) -> ( 0 <_ B <-> A <_ ( A + B ) ) )
2 recn
 |-  ( A e. RR -> A e. CC )
3 recn
 |-  ( B e. RR -> B e. CC )
4 addcom
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) )
5 2 3 4 syl2an
 |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) )
6 5 breq2d
 |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ ( A + B ) <-> A <_ ( B + A ) ) )
7 1 6 bitrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( 0 <_ B <-> A <_ ( B + A ) ) )