| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pfxlen |
|- ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix M ) ) = M ) |
| 2 |
|
swrdrlen |
|- ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. M , ( # ` W ) >. ) ) = ( ( # ` W ) - M ) ) |
| 3 |
1 2
|
oveq12d |
|- ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( ( # ` ( W prefix M ) ) + ( # ` ( W substr <. M , ( # ` W ) >. ) ) ) = ( M + ( ( # ` W ) - M ) ) ) |
| 4 |
|
elfznn0 |
|- ( M e. ( 0 ... ( # ` W ) ) -> M e. NN0 ) |
| 5 |
4
|
nn0cnd |
|- ( M e. ( 0 ... ( # ` W ) ) -> M e. CC ) |
| 6 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
| 7 |
6
|
nn0cnd |
|- ( W e. Word V -> ( # ` W ) e. CC ) |
| 8 |
|
pncan3 |
|- ( ( M e. CC /\ ( # ` W ) e. CC ) -> ( M + ( ( # ` W ) - M ) ) = ( # ` W ) ) |
| 9 |
5 7 8
|
syl2anr |
|- ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( M + ( ( # ` W ) - M ) ) = ( # ` W ) ) |
| 10 |
3 9
|
eqtrd |
|- ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( ( # ` ( W prefix M ) ) + ( # ` ( W substr <. M , ( # ` W ) >. ) ) ) = ( # ` W ) ) |