| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pfxlen | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  prefix  𝑀 ) )  =  𝑀 ) | 
						
							| 2 |  | swrdrlen | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) ) | 
						
							| 3 | 1 2 | oveq12d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( ♯ ‘ ( 𝑊  prefix  𝑀 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( 𝑀  +  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) ) ) | 
						
							| 4 |  | elfznn0 | ⊢ ( 𝑀  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 | 4 | nn0cnd | ⊢ ( 𝑀  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  𝑀  ∈  ℂ ) | 
						
							| 6 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 7 | 6 | nn0cnd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 8 |  | pncan3 | ⊢ ( ( 𝑀  ∈  ℂ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℂ )  →  ( 𝑀  +  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 9 | 5 7 8 | syl2anr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑀  +  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 10 | 3 9 | eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( ♯ ‘ ( 𝑊  prefix  𝑀 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( ♯ ‘ 𝑊 ) ) |