| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdrlen |  |-  ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. M , ( # ` W ) >. ) ) = ( ( # ` W ) - M ) ) | 
						
							| 2 |  | pfxlen |  |-  ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix M ) ) = M ) | 
						
							| 3 | 1 2 | oveq12d |  |-  ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( ( # ` ( W substr <. M , ( # ` W ) >. ) ) + ( # ` ( W prefix M ) ) ) = ( ( ( # ` W ) - M ) + M ) ) | 
						
							| 4 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 5 |  | elfzelz |  |-  ( M e. ( 0 ... ( # ` W ) ) -> M e. ZZ ) | 
						
							| 6 |  | nn0cn |  |-  ( ( # ` W ) e. NN0 -> ( # ` W ) e. CC ) | 
						
							| 7 |  | zcn |  |-  ( M e. ZZ -> M e. CC ) | 
						
							| 8 |  | npcan |  |-  ( ( ( # ` W ) e. CC /\ M e. CC ) -> ( ( ( # ` W ) - M ) + M ) = ( # ` W ) ) | 
						
							| 9 | 6 7 8 | syl2an |  |-  ( ( ( # ` W ) e. NN0 /\ M e. ZZ ) -> ( ( ( # ` W ) - M ) + M ) = ( # ` W ) ) | 
						
							| 10 | 4 5 9 | syl2an |  |-  ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( ( ( # ` W ) - M ) + M ) = ( # ` W ) ) | 
						
							| 11 | 3 10 | eqtrd |  |-  ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( ( # ` ( W substr <. M , ( # ` W ) >. ) ) + ( # ` ( W prefix M ) ) ) = ( # ` W ) ) |