Metamath Proof Explorer


Theorem addsqnot2reu

Description: For each complex number C , there does not uniquely exist two complex numbers a and b , with b squared and added to a resulting in the given complex number C . Double restricted existential uniqueness variant of addsqn2reurex2 . (Contributed by AV, 5-Jul-2023)

Ref Expression
Assertion addsqnot2reu
|- ( C e. CC -> -. E! a e. CC , b e. CC ( a + ( b ^ 2 ) ) = C )

Proof

Step Hyp Ref Expression
1 addsqn2reurex2
 |-  ( C e. CC -> -. ( E! a e. CC E. b e. CC ( a + ( b ^ 2 ) ) = C /\ E! b e. CC E. a e. CC ( a + ( b ^ 2 ) ) = C ) )
2 df-2reu
 |-  ( E! a e. CC , b e. CC ( a + ( b ^ 2 ) ) = C <-> ( E! a e. CC E. b e. CC ( a + ( b ^ 2 ) ) = C /\ E! b e. CC E. a e. CC ( a + ( b ^ 2 ) ) = C ) )
3 1 2 sylnibr
 |-  ( C e. CC -> -. E! a e. CC , b e. CC ( a + ( b ^ 2 ) ) = C )