Metamath Proof Explorer


Theorem addsqnot2reu

Description: For each complex number C , there does not uniquely exist two complex numbers a and b , with b squared and added to a resulting in the given complex number C . Double restricted existential uniqueness variant of addsqn2reurex2 . (Contributed by AV, 5-Jul-2023)

Ref Expression
Assertion addsqnot2reu C ¬ ∃! a , b a + b 2 = C

Proof

Step Hyp Ref Expression
1 addsqn2reurex2 C ¬ ∃! a b a + b 2 = C ∃! b a a + b 2 = C
2 df-2reu ∃! a , b a + b 2 = C ∃! a b a + b 2 = C ∃! b a a + b 2 = C
3 1 2 sylnibr C ¬ ∃! a , b a + b 2 = C