Metamath Proof Explorer


Theorem adh-minim-ax2-lem5

Description: Fifth lemma for the derivation of ax-2 from adh-minim and ax-mp . Polish prefix notation: CpCCCqrsCCrCstCrt . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minim-ax2-lem5
|- ( ph -> ( ( ( ps -> ch ) -> th ) -> ( ( ch -> ( th -> ta ) ) -> ( ch -> ta ) ) ) )

Proof

Step Hyp Ref Expression
1 adh-minim-ax1-ax2-lem4
 |-  ( ( ( ps -> ch ) -> th ) -> ( ( ch -> ( th -> ta ) ) -> ( ch -> ta ) ) )
2 adh-minim-ax1
 |-  ( ( ( ( ps -> ch ) -> th ) -> ( ( ch -> ( th -> ta ) ) -> ( ch -> ta ) ) ) -> ( ph -> ( ( ( ps -> ch ) -> th ) -> ( ( ch -> ( th -> ta ) ) -> ( ch -> ta ) ) ) ) )
3 1 2 ax-mp
 |-  ( ph -> ( ( ( ps -> ch ) -> th ) -> ( ( ch -> ( th -> ta ) ) -> ( ch -> ta ) ) ) )