Description: The adjoint function maps one-to-one onto its domain. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adj1o | |- adjh : dom adjh -1-1-onto-> dom adjh |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funadj | |- Fun adjh |
|
| 2 | funfn | |- ( Fun adjh <-> adjh Fn dom adjh ) |
|
| 3 | 1 2 | mpbi | |- adjh Fn dom adjh |
| 4 | funcnvadj | |- Fun `' adjh |
|
| 5 | df-rn | |- ran adjh = dom `' adjh |
|
| 6 | cnvadj | |- `' adjh = adjh |
|
| 7 | 6 | dmeqi | |- dom `' adjh = dom adjh |
| 8 | 5 7 | eqtri | |- ran adjh = dom adjh |
| 9 | dff1o2 | |- ( adjh : dom adjh -1-1-onto-> dom adjh <-> ( adjh Fn dom adjh /\ Fun `' adjh /\ ran adjh = dom adjh ) ) |
|
| 10 | 3 4 8 9 | mpbir3an | |- adjh : dom adjh -1-1-onto-> dom adjh |