Description: Weak version of alcom and biconditional form of alcomimw . Uses only Tarski's FOL axiom schemes. (Contributed by BTernaryTau, 28-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | alcomw.1 | |- ( x = w -> ( ph <-> ps ) ) | |
| alcomw.2 | |- ( y = z -> ( ph <-> ch ) ) | ||
| Assertion | alcomw | |- ( A. x A. y ph <-> A. y A. x ph ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | alcomw.1 | |- ( x = w -> ( ph <-> ps ) ) | |
| 2 | alcomw.2 | |- ( y = z -> ( ph <-> ch ) ) | |
| 3 | 2 | alcomimw | |- ( A. x A. y ph -> A. y A. x ph ) | 
| 4 | 1 | alcomimw | |- ( A. y A. x ph -> A. x A. y ph ) | 
| 5 | 3 4 | impbii | |- ( A. x A. y ph <-> A. y A. x ph ) |