Step |
Hyp |
Ref |
Expression |
1 |
|
alephsson |
|- ran aleph C_ On |
2 |
|
eqid |
|- ( rec ( aleph , _om ) |` _om ) = ( rec ( aleph , _om ) |` _om ) |
3 |
2
|
alephfplem4 |
|- U. ( ( rec ( aleph , _om ) |` _om ) " _om ) e. ran aleph |
4 |
1 3
|
sselii |
|- U. ( ( rec ( aleph , _om ) |` _om ) " _om ) e. On |
5 |
2
|
alephfp |
|- ( aleph ` U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) |
6 |
|
fveq2 |
|- ( x = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) -> ( aleph ` x ) = ( aleph ` U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) ) |
7 |
|
id |
|- ( x = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) -> x = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) |
8 |
6 7
|
eqeq12d |
|- ( x = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) -> ( ( aleph ` x ) = x <-> ( aleph ` U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) ) |
9 |
8
|
rspcev |
|- ( ( U. ( ( rec ( aleph , _om ) |` _om ) " _om ) e. On /\ ( aleph ` U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) -> E. x e. On ( aleph ` x ) = x ) |
10 |
4 5 9
|
mp2an |
|- E. x e. On ( aleph ` x ) = x |