Metamath Proof Explorer


Theorem alephfp2

Description: The aleph function has at least one fixed point. Proposition 11.18 of TakeutiZaring p. 104. See alephfp for an actual example of a fixed point. Compare the inequality alephle that holds in general. Note that if x is a fixed point, then alephalephaleph` ... aleph `x = x . (Contributed by NM, 6-Nov-2004) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion alephfp2 xOnx=x

Proof

Step Hyp Ref Expression
1 alephsson ranOn
2 eqid recωω=recωω
3 2 alephfplem4 recωωωran
4 1 3 sselii recωωωOn
5 2 alephfp recωωω=recωωω
6 fveq2 x=recωωωx=recωωω
7 id x=recωωωx=recωωω
8 6 7 eqeq12d x=recωωωx=xrecωωω=recωωω
9 8 rspcev recωωωOnrecωωω=recωωωxOnx=x
10 4 5 9 mp2an xOnx=x