Metamath Proof Explorer


Theorem alephfplem4

Description: Lemma for alephfp . (Contributed by NM, 5-Nov-2004)

Ref Expression
Hypothesis alephfplem.1 H=recωω
Assertion alephfplem4 Hωran

Proof

Step Hyp Ref Expression
1 alephfplem.1 H=recωω
2 frfnom recωωFnω
3 1 fneq1i HFnωrecωωFnω
4 2 3 mpbir HFnω
5 1 alephfplem3 zωHzran
6 5 rgen zωHzran
7 ffnfv H:ωranHFnωzωHzran
8 4 6 7 mpbir2an H:ωran
9 ssun2 ranωran
10 fss H:ωranranωranH:ωωran
11 8 9 10 mp2an H:ωωran
12 peano1 ω
13 1 alephfplem1 Hran
14 fveq2 z=Hz=H
15 14 eleq1d z=HzranHran
16 15 rspcev ωHranzωHzran
17 12 13 16 mp2an zωHzran
18 omex ωV
19 cardinfima ωVH:ωωranzωHzranHωran
20 18 19 ax-mp H:ωωranzωHzranHωran
21 11 17 20 mp2an Hωran