Metamath Proof Explorer


Theorem alephle

Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of TakeutiZaring p. 91. (Later, in alephfp2 , we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003) (Proof shortened by Mario Carneiro, 22-Feb-2013)

Ref Expression
Assertion alephle AOnAA

Proof

Step Hyp Ref Expression
1 id x=yx=y
2 fveq2 x=yx=y
3 1 2 sseq12d x=yxxyy
4 id x=Ax=A
5 fveq2 x=Ax=A
6 4 5 sseq12d x=AxxAA
7 alephord2i xOnyxyx
8 7 imp xOnyxyx
9 onelon xOnyxyOn
10 alephon xOn
11 ontr2 yOnxOnyyyxyx
12 9 10 11 sylancl xOnyxyyyxyx
13 8 12 mpan2d xOnyxyyyx
14 13 ralimdva xOnyxyyyxyx
15 10 onirri ¬xx
16 eleq1 y=xyxxx
17 16 rspccv yxyxxxxx
18 15 17 mtoi yxyx¬xx
19 ontri1 xOnxOnxx¬xx
20 10 19 mpan2 xOnxx¬xx
21 18 20 imbitrrid xOnyxyxxx
22 14 21 syld xOnyxyyxx
23 3 6 22 tfis3 AOnAA