Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of TakeutiZaring p. 91. (Later, in alephfp2 , we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003) (Proof shortened by Mario Carneiro, 22-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | alephle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |
|
2 | fveq2 | |
|
3 | 1 2 | sseq12d | |
4 | id | |
|
5 | fveq2 | |
|
6 | 4 5 | sseq12d | |
7 | alephord2i | |
|
8 | 7 | imp | |
9 | onelon | |
|
10 | alephon | |
|
11 | ontr2 | |
|
12 | 9 10 11 | sylancl | |
13 | 8 12 | mpan2d | |
14 | 13 | ralimdva | |
15 | 10 | onirri | |
16 | eleq1 | |
|
17 | 16 | rspccv | |
18 | 15 17 | mtoi | |
19 | ontri1 | |
|
20 | 10 19 | mpan2 | |
21 | 18 20 | imbitrrid | |
22 | 14 21 | syld | |
23 | 3 6 22 | tfis3 | |