Metamath Proof Explorer


Theorem cardaleph

Description: Given any transfinite cardinal number A , there is exactly one aleph that is equal to it. Here we compute that alephexplicitly. (Contributed by NM, 9-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)

Ref Expression
Assertion cardaleph ωAcardA=AA=xOn|Ax

Proof

Step Hyp Ref Expression
1 cardon cardAOn
2 eleq1 cardA=AcardAOnAOn
3 1 2 mpbii cardA=AAOn
4 alephle AOnAA
5 fveq2 x=Ax=A
6 5 sseq2d x=AAxAA
7 6 rspcev AOnAAxOnAx
8 4 7 mpdan AOnxOnAx
9 nfcv _xA
10 nfcv _x
11 nfrab1 _xxOn|Ax
12 11 nfint _xxOn|Ax
13 10 12 nffv _xxOn|Ax
14 9 13 nfss xAxOn|Ax
15 fveq2 x=xOn|Axx=xOn|Ax
16 15 sseq2d x=xOn|AxAxAxOn|Ax
17 14 16 onminsb xOnAxAxOn|Ax
18 3 8 17 3syl cardA=AAxOn|Ax
19 18 a1i xOn|Ax=cardA=AAxOn|Ax
20 fveq2 xOn|Ax=xOn|Ax=
21 aleph0 =ω
22 20 21 eqtrdi xOn|Ax=xOn|Ax=ω
23 22 sseq1d xOn|Ax=xOn|AxAωA
24 23 biimprd xOn|Ax=ωAxOn|AxA
25 19 24 anim12d xOn|Ax=cardA=AωAAxOn|AxxOn|AxA
26 eqss A=xOn|AxAxOn|AxxOn|AxA
27 25 26 syl6ibr xOn|Ax=cardA=AωAA=xOn|Ax
28 27 com12 cardA=AωAxOn|Ax=A=xOn|Ax
29 28 ancoms ωAcardA=AxOn|Ax=A=xOn|Ax
30 fveq2 x=yx=y
31 30 sseq2d x=yAxAy
32 31 onnminsb yOnyxOn|Ax¬Ay
33 vex yV
34 33 sucid ysucy
35 eleq2 xOn|Ax=sucyyxOn|Axysucy
36 34 35 mpbiri xOn|Ax=sucyyxOn|Ax
37 32 36 impel yOnxOn|Ax=sucy¬Ay
38 37 adantl cardA=AyOnxOn|Ax=sucy¬Ay
39 fveq2 xOn|Ax=sucyxOn|Ax=sucy
40 alephsuc yOnsucy=hary
41 39 40 sylan9eqr yOnxOn|Ax=sucyxOn|Ax=hary
42 41 eleq2d yOnxOn|Ax=sucyAxOn|AxAhary
43 42 biimpd yOnxOn|Ax=sucyAxOn|AxAhary
44 elharval AharyAOnAy
45 44 simprbi AharyAy
46 onenon AOnAdomcard
47 3 46 syl cardA=AAdomcard
48 alephon yOn
49 onenon yOnydomcard
50 48 49 ax-mp ydomcard
51 carddom2 AdomcardydomcardcardAcardyAy
52 47 50 51 sylancl cardA=AcardAcardyAy
53 sseq1 cardA=AcardAcardyAcardy
54 alephcard cardy=y
55 54 sseq2i AcardyAy
56 53 55 bitrdi cardA=AcardAcardyAy
57 52 56 bitr3d cardA=AAyAy
58 45 57 imbitrid cardA=AAharyAy
59 43 58 sylan9r cardA=AyOnxOn|Ax=sucyAxOn|AxAy
60 38 59 mtod cardA=AyOnxOn|Ax=sucy¬AxOn|Ax
61 60 rexlimdvaa cardA=AyOnxOn|Ax=sucy¬AxOn|Ax
62 onintrab2 xOnAxxOn|AxOn
63 8 62 sylib AOnxOn|AxOn
64 onelon xOn|AxOnyxOn|AxyOn
65 63 64 sylan AOnyxOn|AxyOn
66 32 adantld yOnAOnyxOn|Ax¬Ay
67 65 66 mpcom AOnyxOn|Ax¬Ay
68 48 onelssi AyAy
69 67 68 nsyl AOnyxOn|Ax¬Ay
70 69 nrexdv AOn¬yxOn|AxAy
71 70 adantr AOnLimxOn|Ax¬yxOn|AxAy
72 alephlim xOn|AxOnLimxOn|AxxOn|Ax=yxOn|Axy
73 63 72 sylan AOnLimxOn|AxxOn|Ax=yxOn|Axy
74 73 eleq2d AOnLimxOn|AxAxOn|AxAyxOn|Axy
75 eliun AyxOn|AxyyxOn|AxAy
76 74 75 bitrdi AOnLimxOn|AxAxOn|AxyxOn|AxAy
77 71 76 mtbird AOnLimxOn|Ax¬AxOn|Ax
78 77 ex AOnLimxOn|Ax¬AxOn|Ax
79 3 78 syl cardA=ALimxOn|Ax¬AxOn|Ax
80 61 79 jaod cardA=AyOnxOn|Ax=sucyLimxOn|Ax¬AxOn|Ax
81 8 17 syl AOnAxOn|Ax
82 alephon xOn|AxOn
83 onsseleq AOnxOn|AxOnAxOn|AxAxOn|AxA=xOn|Ax
84 82 83 mpan2 AOnAxOn|AxAxOn|AxA=xOn|Ax
85 81 84 mpbid AOnAxOn|AxA=xOn|Ax
86 85 ord AOn¬AxOn|AxA=xOn|Ax
87 3 80 86 sylsyld cardA=AyOnxOn|Ax=sucyLimxOn|AxA=xOn|Ax
88 87 adantl ωAcardA=AyOnxOn|Ax=sucyLimxOn|AxA=xOn|Ax
89 eloni xOn|AxOnOrdxOn|Ax
90 ordzsl OrdxOn|AxxOn|Ax=yOnxOn|Ax=sucyLimxOn|Ax
91 3orass xOn|Ax=yOnxOn|Ax=sucyLimxOn|AxxOn|Ax=yOnxOn|Ax=sucyLimxOn|Ax
92 90 91 bitri OrdxOn|AxxOn|Ax=yOnxOn|Ax=sucyLimxOn|Ax
93 89 92 sylib xOn|AxOnxOn|Ax=yOnxOn|Ax=sucyLimxOn|Ax
94 3 63 93 3syl cardA=AxOn|Ax=yOnxOn|Ax=sucyLimxOn|Ax
95 94 adantl ωAcardA=AxOn|Ax=yOnxOn|Ax=sucyLimxOn|Ax
96 29 88 95 mpjaod ωAcardA=AA=xOn|Ax