Step |
Hyp |
Ref |
Expression |
1 |
|
alephord |
|- ( ( A e. On /\ B e. On ) -> ( A e. B <-> ( aleph ` A ) ~< ( aleph ` B ) ) ) |
2 |
|
alephon |
|- ( aleph ` A ) e. On |
3 |
|
alephon |
|- ( aleph ` B ) e. On |
4 |
|
onenon |
|- ( ( aleph ` B ) e. On -> ( aleph ` B ) e. dom card ) |
5 |
3 4
|
ax-mp |
|- ( aleph ` B ) e. dom card |
6 |
|
cardsdomel |
|- ( ( ( aleph ` A ) e. On /\ ( aleph ` B ) e. dom card ) -> ( ( aleph ` A ) ~< ( aleph ` B ) <-> ( aleph ` A ) e. ( card ` ( aleph ` B ) ) ) ) |
7 |
2 5 6
|
mp2an |
|- ( ( aleph ` A ) ~< ( aleph ` B ) <-> ( aleph ` A ) e. ( card ` ( aleph ` B ) ) ) |
8 |
|
alephcard |
|- ( card ` ( aleph ` B ) ) = ( aleph ` B ) |
9 |
8
|
eleq2i |
|- ( ( aleph ` A ) e. ( card ` ( aleph ` B ) ) <-> ( aleph ` A ) e. ( aleph ` B ) ) |
10 |
7 9
|
bitri |
|- ( ( aleph ` A ) ~< ( aleph ` B ) <-> ( aleph ` A ) e. ( aleph ` B ) ) |
11 |
1 10
|
bitrdi |
|- ( ( A e. On /\ B e. On ) -> ( A e. B <-> ( aleph ` A ) e. ( aleph ` B ) ) ) |