| Step |
Hyp |
Ref |
Expression |
| 1 |
|
algpart.a |
|- A = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. } ) |
| 2 |
1
|
algstr |
|- A Struct <. 1 , 6 >. |
| 3 |
|
scaid |
|- Scalar = Slot ( Scalar ` ndx ) |
| 4 |
|
snsspr1 |
|- { <. ( Scalar ` ndx ) , S >. } C_ { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. } |
| 5 |
|
ssun2 |
|- { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. } ) |
| 6 |
5 1
|
sseqtrri |
|- { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. } C_ A |
| 7 |
4 6
|
sstri |
|- { <. ( Scalar ` ndx ) , S >. } C_ A |
| 8 |
2 3 7
|
strfv |
|- ( S e. V -> S = ( Scalar ` A ) ) |