Metamath Proof Explorer


Theorem algsca

Description: The set of scalars of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis algpart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
Assertion algsca S V S = Scalar A

Proof

Step Hyp Ref Expression
1 algpart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
2 1 algstr A Struct 1 6
3 scaid Scalar = Slot Scalar ndx
4 snsspr1 Scalar ndx S Scalar ndx S ndx · ˙
5 ssun2 Scalar ndx S ndx · ˙ Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
6 5 1 sseqtrri Scalar ndx S ndx · ˙ A
7 4 6 sstri Scalar ndx S A
8 2 3 7 strfv S V S = Scalar A