Metamath Proof Explorer


Theorem algvsca

Description: The scalar product operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis algpart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙
Assertion algvsca ·˙V·˙=A

Proof

Step Hyp Ref Expression
1 algpart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙
2 1 algstr AStruct16
3 vscaid 𝑠=Slotndx
4 snsspr2 ndx·˙ScalarndxSndx·˙
5 ssun2 ScalarndxSndx·˙BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙
6 5 1 sseqtrri ScalarndxSndx·˙A
7 4 6 sstri ndx·˙A
8 2 3 7 strfv ·˙V·˙=A