Metamath Proof Explorer


Theorem mendval

Description: Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015)

Ref Expression
Hypotheses mendval.b B = M LMHom M
mendval.p + ˙ = x B , y B x + M f y
mendval.t × ˙ = x B , y B x y
mendval.s S = Scalar M
mendval.v · ˙ = x Base S , y B Base M × x M f y
Assertion mendval M X MEndo M = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙

Proof

Step Hyp Ref Expression
1 mendval.b B = M LMHom M
2 mendval.p + ˙ = x B , y B x + M f y
3 mendval.t × ˙ = x B , y B x y
4 mendval.s S = Scalar M
5 mendval.v · ˙ = x Base S , y B Base M × x M f y
6 elex M X M V
7 oveq12 m = M m = M m LMHom m = M LMHom M
8 7 anidms m = M m LMHom m = M LMHom M
9 8 1 eqtr4di m = M m LMHom m = B
10 9 csbeq1d m = M m LMHom m / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y = B / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y
11 ovex m LMHom m V
12 9 11 eqeltrrdi m = M B V
13 simpr m = M b = B b = B
14 13 opeq2d m = M b = B Base ndx b = Base ndx B
15 fveq2 m = M + m = + M
16 15 ofeqd m = M f + m = f + M
17 16 oveqdr m = M b = B x + m f y = x + M f y
18 13 13 17 mpoeq123dv m = M b = B x b , y b x + m f y = x B , y B x + M f y
19 18 2 eqtr4di m = M b = B x b , y b x + m f y = + ˙
20 19 opeq2d m = M b = B + ndx x b , y b x + m f y = + ndx + ˙
21 eqidd m = M b = B x y = x y
22 13 13 21 mpoeq123dv m = M b = B x b , y b x y = x B , y B x y
23 22 3 eqtr4di m = M b = B x b , y b x y = × ˙
24 23 opeq2d m = M b = B ndx x b , y b x y = ndx × ˙
25 14 20 24 tpeq123d m = M b = B Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y = Base ndx B + ndx + ˙ ndx × ˙
26 fveq2 m = M Scalar m = Scalar M
27 26 adantr m = M b = B Scalar m = Scalar M
28 27 4 eqtr4di m = M b = B Scalar m = S
29 28 opeq2d m = M b = B Scalar ndx Scalar m = Scalar ndx S
30 28 fveq2d m = M b = B Base Scalar m = Base S
31 fveq2 m = M m = M
32 31 adantr m = M b = B m = M
33 32 ofeqd m = M b = B f m = f M
34 fveq2 m = M Base m = Base M
35 34 adantr m = M b = B Base m = Base M
36 35 xpeq1d m = M b = B Base m × x = Base M × x
37 eqidd m = M b = B y = y
38 33 36 37 oveq123d m = M b = B Base m × x m f y = Base M × x M f y
39 30 13 38 mpoeq123dv m = M b = B x Base Scalar m , y b Base m × x m f y = x Base S , y B Base M × x M f y
40 39 5 eqtr4di m = M b = B x Base Scalar m , y b Base m × x m f y = · ˙
41 40 opeq2d m = M b = B ndx x Base Scalar m , y b Base m × x m f y = ndx · ˙
42 29 41 preq12d m = M b = B Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y = Scalar ndx S ndx · ˙
43 25 42 uneq12d m = M b = B Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
44 12 43 csbied m = M B / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
45 10 44 eqtrd m = M m LMHom m / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
46 df-mend MEndo = m V m LMHom m / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y
47 tpex Base ndx B + ndx + ˙ ndx × ˙ V
48 prex Scalar ndx S ndx · ˙ V
49 47 48 unex Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ V
50 45 46 49 fvmpt M V MEndo M = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
51 6 50 syl M X MEndo M = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙