Metamath Proof Explorer


Theorem mendval

Description: Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015)

Ref Expression
Hypotheses mendval.b B = M LMHom M
mendval.p + ˙ = x B , y B x + M f y
mendval.t × ˙ = x B , y B x y
mendval.s S = Scalar M
mendval.v · ˙ = x Base S , y B Base M × x M f y
Assertion mendval M X MEndo M = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙

Proof

Step Hyp Ref Expression
1 mendval.b B = M LMHom M
2 mendval.p + ˙ = x B , y B x + M f y
3 mendval.t × ˙ = x B , y B x y
4 mendval.s S = Scalar M
5 mendval.v · ˙ = x Base S , y B Base M × x M f y
6 elex M X M V
7 oveq12 m = M m = M m LMHom m = M LMHom M
8 7 anidms m = M m LMHom m = M LMHom M
9 8 1 eqtr4di m = M m LMHom m = B
10 9 csbeq1d m = M m LMHom m / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y = B / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y
11 ovex m LMHom m V
12 9 11 eqeltrrdi m = M B V
13 simpr m = M b = B b = B
14 13 opeq2d m = M b = B Base ndx b = Base ndx B
15 fveq2 m = M + m = + M
16 ofeq + m = + M f + m = f + M
17 15 16 syl m = M f + m = f + M
18 17 oveqdr m = M b = B x + m f y = x + M f y
19 13 13 18 mpoeq123dv m = M b = B x b , y b x + m f y = x B , y B x + M f y
20 19 2 eqtr4di m = M b = B x b , y b x + m f y = + ˙
21 20 opeq2d m = M b = B + ndx x b , y b x + m f y = + ndx + ˙
22 eqidd m = M b = B x y = x y
23 13 13 22 mpoeq123dv m = M b = B x b , y b x y = x B , y B x y
24 23 3 eqtr4di m = M b = B x b , y b x y = × ˙
25 24 opeq2d m = M b = B ndx x b , y b x y = ndx × ˙
26 14 21 25 tpeq123d m = M b = B Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y = Base ndx B + ndx + ˙ ndx × ˙
27 fveq2 m = M Scalar m = Scalar M
28 27 adantr m = M b = B Scalar m = Scalar M
29 28 4 eqtr4di m = M b = B Scalar m = S
30 29 opeq2d m = M b = B Scalar ndx Scalar m = Scalar ndx S
31 29 fveq2d m = M b = B Base Scalar m = Base S
32 fveq2 m = M m = M
33 32 adantr m = M b = B m = M
34 ofeq m = M f m = f M
35 33 34 syl m = M b = B f m = f M
36 fveq2 m = M Base m = Base M
37 36 adantr m = M b = B Base m = Base M
38 37 xpeq1d m = M b = B Base m × x = Base M × x
39 eqidd m = M b = B y = y
40 35 38 39 oveq123d m = M b = B Base m × x m f y = Base M × x M f y
41 31 13 40 mpoeq123dv m = M b = B x Base Scalar m , y b Base m × x m f y = x Base S , y B Base M × x M f y
42 41 5 eqtr4di m = M b = B x Base Scalar m , y b Base m × x m f y = · ˙
43 42 opeq2d m = M b = B ndx x Base Scalar m , y b Base m × x m f y = ndx · ˙
44 30 43 preq12d m = M b = B Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y = Scalar ndx S ndx · ˙
45 26 44 uneq12d m = M b = B Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
46 12 45 csbied m = M B / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
47 10 46 eqtrd m = M m LMHom m / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
48 df-mend MEndo = m V m LMHom m / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y
49 tpex Base ndx B + ndx + ˙ ndx × ˙ V
50 prex Scalar ndx S ndx · ˙ V
51 49 50 unex Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ V
52 47 48 51 fvmpt M V MEndo M = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
53 6 52 syl M X MEndo M = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙