Metamath Proof Explorer


Definition df-mend

Description: Define the endomorphism algebra of a module. (Contributed by Stefan O'Rear, 2-Sep-2015)

Ref Expression
Assertion df-mend MEndo = m V m LMHom m / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmend class MEndo
1 vm setvar m
2 cvv class V
3 1 cv setvar m
4 clmhm class LMHom
5 3 3 4 co class m LMHom m
6 vb setvar b
7 cbs class Base
8 cnx class ndx
9 8 7 cfv class Base ndx
10 6 cv setvar b
11 9 10 cop class Base ndx b
12 cplusg class + 𝑔
13 8 12 cfv class + ndx
14 vx setvar x
15 vy setvar y
16 14 cv setvar x
17 3 12 cfv class + m
18 17 cof class f + m
19 15 cv setvar y
20 16 19 18 co class x + m f y
21 14 15 10 10 20 cmpo class x b , y b x + m f y
22 13 21 cop class + ndx x b , y b x + m f y
23 cmulr class 𝑟
24 8 23 cfv class ndx
25 16 19 ccom class x y
26 14 15 10 10 25 cmpo class x b , y b x y
27 24 26 cop class ndx x b , y b x y
28 11 22 27 ctp class Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y
29 csca class Scalar
30 8 29 cfv class Scalar ndx
31 3 29 cfv class Scalar m
32 30 31 cop class Scalar ndx Scalar m
33 cvsca class 𝑠
34 8 33 cfv class ndx
35 31 7 cfv class Base Scalar m
36 3 7 cfv class Base m
37 16 csn class x
38 36 37 cxp class Base m × x
39 3 33 cfv class m
40 39 cof class f m
41 38 19 40 co class Base m × x m f y
42 14 15 35 10 41 cmpo class x Base Scalar m , y b Base m × x m f y
43 34 42 cop class ndx x Base Scalar m , y b Base m × x m f y
44 32 43 cpr class Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y
45 28 44 cun class Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y
46 6 5 45 csb class m LMHom m / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y
47 1 2 46 cmpt class m V m LMHom m / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y
48 0 47 wceq wff MEndo = m V m LMHom m / b Base ndx b + ndx x b , y b x + m f y ndx x b , y b x y Scalar ndx Scalar m ndx x Base Scalar m , y b Base m × x m f y