Metamath Proof Explorer


Definition df-mend

Description: Define the endomorphism algebra of a module. (Contributed by Stefan O'Rear, 2-Sep-2015)

Ref Expression
Assertion df-mend MEndo=mVmLMHomm/bBasendxb+ndxxb,ybx+mfyndxxb,ybxyScalarndxScalarmndxxBaseScalarm,ybBasem×xmfy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmend classMEndo
1 vm setvarm
2 cvv classV
3 1 cv setvarm
4 clmhm classLMHom
5 3 3 4 co classmLMHomm
6 vb setvarb
7 cbs classBase
8 cnx classndx
9 8 7 cfv classBasendx
10 6 cv setvarb
11 9 10 cop classBasendxb
12 cplusg class+𝑔
13 8 12 cfv class+ndx
14 vx setvarx
15 vy setvary
16 14 cv setvarx
17 3 12 cfv class+m
18 17 cof classf+m
19 15 cv setvary
20 16 19 18 co classx+mfy
21 14 15 10 10 20 cmpo classxb,ybx+mfy
22 13 21 cop class+ndxxb,ybx+mfy
23 cmulr class𝑟
24 8 23 cfv classndx
25 16 19 ccom classxy
26 14 15 10 10 25 cmpo classxb,ybxy
27 24 26 cop classndxxb,ybxy
28 11 22 27 ctp classBasendxb+ndxxb,ybx+mfyndxxb,ybxy
29 csca classScalar
30 8 29 cfv classScalarndx
31 3 29 cfv classScalarm
32 30 31 cop classScalarndxScalarm
33 cvsca class𝑠
34 8 33 cfv classndx
35 31 7 cfv classBaseScalarm
36 3 7 cfv classBasem
37 16 csn classx
38 36 37 cxp classBasem×x
39 3 33 cfv classm
40 39 cof classfm
41 38 19 40 co classBasem×xmfy
42 14 15 35 10 41 cmpo classxBaseScalarm,ybBasem×xmfy
43 34 42 cop classndxxBaseScalarm,ybBasem×xmfy
44 32 43 cpr classScalarndxScalarmndxxBaseScalarm,ybBasem×xmfy
45 28 44 cun classBasendxb+ndxxb,ybx+mfyndxxb,ybxyScalarndxScalarmndxxBaseScalarm,ybBasem×xmfy
46 6 5 45 csb classmLMHomm/bBasendxb+ndxxb,ybx+mfyndxxb,ybxyScalarndxScalarmndxxBaseScalarm,ybBasem×xmfy
47 1 2 46 cmpt classmVmLMHomm/bBasendxb+ndxxb,ybx+mfyndxxb,ybxyScalarndxScalarmndxxBaseScalarm,ybBasem×xmfy
48 0 47 wceq wffMEndo=mVmLMHomm/bBasendxb+ndxxb,ybx+mfyndxxb,ybxyScalarndxScalarmndxxBaseScalarm,ybBasem×xmfy