Metamath Proof Explorer


Theorem algstr

Description: Lemma to shorten proofs of algbase through algvsca . (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis algpart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
Assertion algstr A Struct 1 6

Proof

Step Hyp Ref Expression
1 algpart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
2 eqid Base ndx B + ndx + ˙ ndx × ˙ = Base ndx B + ndx + ˙ ndx × ˙
3 2 rngstr Base ndx B + ndx + ˙ ndx × ˙ Struct 1 3
4 5nn 5
5 scandx Scalar ndx = 5
6 5lt6 5 < 6
7 6nn 6
8 vscandx ndx = 6
9 4 5 6 7 8 strle2 Scalar ndx S ndx · ˙ Struct 5 6
10 3lt5 3 < 5
11 3 9 10 strleun Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ Struct 1 6
12 1 11 eqbrtri A Struct 1 6