Step |
Hyp |
Ref |
Expression |
1 |
|
mendval.b |
|- B = ( M LMHom M ) |
2 |
|
mendval.p |
|- .+ = ( x e. B , y e. B |-> ( x oF ( +g ` M ) y ) ) |
3 |
|
mendval.t |
|- .X. = ( x e. B , y e. B |-> ( x o. y ) ) |
4 |
|
mendval.s |
|- S = ( Scalar ` M ) |
5 |
|
mendval.v |
|- .x. = ( x e. ( Base ` S ) , y e. B |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) |
6 |
|
elex |
|- ( M e. X -> M e. _V ) |
7 |
|
oveq12 |
|- ( ( m = M /\ m = M ) -> ( m LMHom m ) = ( M LMHom M ) ) |
8 |
7
|
anidms |
|- ( m = M -> ( m LMHom m ) = ( M LMHom M ) ) |
9 |
8 1
|
eqtr4di |
|- ( m = M -> ( m LMHom m ) = B ) |
10 |
9
|
csbeq1d |
|- ( m = M -> [_ ( m LMHom m ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) = [_ B / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) ) |
11 |
|
ovex |
|- ( m LMHom m ) e. _V |
12 |
9 11
|
eqeltrrdi |
|- ( m = M -> B e. _V ) |
13 |
|
simpr |
|- ( ( m = M /\ b = B ) -> b = B ) |
14 |
13
|
opeq2d |
|- ( ( m = M /\ b = B ) -> <. ( Base ` ndx ) , b >. = <. ( Base ` ndx ) , B >. ) |
15 |
|
fveq2 |
|- ( m = M -> ( +g ` m ) = ( +g ` M ) ) |
16 |
|
ofeq |
|- ( ( +g ` m ) = ( +g ` M ) -> oF ( +g ` m ) = oF ( +g ` M ) ) |
17 |
15 16
|
syl |
|- ( m = M -> oF ( +g ` m ) = oF ( +g ` M ) ) |
18 |
17
|
oveqdr |
|- ( ( m = M /\ b = B ) -> ( x oF ( +g ` m ) y ) = ( x oF ( +g ` M ) y ) ) |
19 |
13 13 18
|
mpoeq123dv |
|- ( ( m = M /\ b = B ) -> ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) = ( x e. B , y e. B |-> ( x oF ( +g ` M ) y ) ) ) |
20 |
19 2
|
eqtr4di |
|- ( ( m = M /\ b = B ) -> ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) = .+ ) |
21 |
20
|
opeq2d |
|- ( ( m = M /\ b = B ) -> <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. = <. ( +g ` ndx ) , .+ >. ) |
22 |
|
eqidd |
|- ( ( m = M /\ b = B ) -> ( x o. y ) = ( x o. y ) ) |
23 |
13 13 22
|
mpoeq123dv |
|- ( ( m = M /\ b = B ) -> ( x e. b , y e. b |-> ( x o. y ) ) = ( x e. B , y e. B |-> ( x o. y ) ) ) |
24 |
23 3
|
eqtr4di |
|- ( ( m = M /\ b = B ) -> ( x e. b , y e. b |-> ( x o. y ) ) = .X. ) |
25 |
24
|
opeq2d |
|- ( ( m = M /\ b = B ) -> <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. = <. ( .r ` ndx ) , .X. >. ) |
26 |
14 21 25
|
tpeq123d |
|- ( ( m = M /\ b = B ) -> { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } ) |
27 |
|
fveq2 |
|- ( m = M -> ( Scalar ` m ) = ( Scalar ` M ) ) |
28 |
27
|
adantr |
|- ( ( m = M /\ b = B ) -> ( Scalar ` m ) = ( Scalar ` M ) ) |
29 |
28 4
|
eqtr4di |
|- ( ( m = M /\ b = B ) -> ( Scalar ` m ) = S ) |
30 |
29
|
opeq2d |
|- ( ( m = M /\ b = B ) -> <. ( Scalar ` ndx ) , ( Scalar ` m ) >. = <. ( Scalar ` ndx ) , S >. ) |
31 |
29
|
fveq2d |
|- ( ( m = M /\ b = B ) -> ( Base ` ( Scalar ` m ) ) = ( Base ` S ) ) |
32 |
|
fveq2 |
|- ( m = M -> ( .s ` m ) = ( .s ` M ) ) |
33 |
32
|
adantr |
|- ( ( m = M /\ b = B ) -> ( .s ` m ) = ( .s ` M ) ) |
34 |
|
ofeq |
|- ( ( .s ` m ) = ( .s ` M ) -> oF ( .s ` m ) = oF ( .s ` M ) ) |
35 |
33 34
|
syl |
|- ( ( m = M /\ b = B ) -> oF ( .s ` m ) = oF ( .s ` M ) ) |
36 |
|
fveq2 |
|- ( m = M -> ( Base ` m ) = ( Base ` M ) ) |
37 |
36
|
adantr |
|- ( ( m = M /\ b = B ) -> ( Base ` m ) = ( Base ` M ) ) |
38 |
37
|
xpeq1d |
|- ( ( m = M /\ b = B ) -> ( ( Base ` m ) X. { x } ) = ( ( Base ` M ) X. { x } ) ) |
39 |
|
eqidd |
|- ( ( m = M /\ b = B ) -> y = y ) |
40 |
35 38 39
|
oveq123d |
|- ( ( m = M /\ b = B ) -> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) |
41 |
31 13 40
|
mpoeq123dv |
|- ( ( m = M /\ b = B ) -> ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) = ( x e. ( Base ` S ) , y e. B |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) ) |
42 |
41 5
|
eqtr4di |
|- ( ( m = M /\ b = B ) -> ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) = .x. ) |
43 |
42
|
opeq2d |
|- ( ( m = M /\ b = B ) -> <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. = <. ( .s ` ndx ) , .x. >. ) |
44 |
30 43
|
preq12d |
|- ( ( m = M /\ b = B ) -> { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } = { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. } ) |
45 |
26 44
|
uneq12d |
|- ( ( m = M /\ b = B ) -> ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. } ) ) |
46 |
12 45
|
csbied |
|- ( m = M -> [_ B / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. } ) ) |
47 |
10 46
|
eqtrd |
|- ( m = M -> [_ ( m LMHom m ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. } ) ) |
48 |
|
df-mend |
|- MEndo = ( m e. _V |-> [_ ( m LMHom m ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) ) |
49 |
|
tpex |
|- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } e. _V |
50 |
|
prex |
|- { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. } e. _V |
51 |
49 50
|
unex |
|- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. } ) e. _V |
52 |
47 48 51
|
fvmpt |
|- ( M e. _V -> ( MEndo ` M ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. } ) ) |
53 |
6 52
|
syl |
|- ( M e. X -> ( MEndo ` M ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. } ) ) |