| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mendbas.a |
|- A = ( MEndo ` M ) |
| 2 |
|
ovex |
|- ( M LMHom M ) e. _V |
| 3 |
|
eqid |
|- ( { <. ( Base ` ndx ) , ( M LMHom M ) >. , <. ( +g ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) = ( { <. ( Base ` ndx ) , ( M LMHom M ) >. , <. ( +g ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) |
| 4 |
3
|
algbase |
|- ( ( M LMHom M ) e. _V -> ( M LMHom M ) = ( Base ` ( { <. ( Base ` ndx ) , ( M LMHom M ) >. , <. ( +g ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) ) |
| 5 |
2 4
|
mp1i |
|- ( M e. _V -> ( M LMHom M ) = ( Base ` ( { <. ( Base ` ndx ) , ( M LMHom M ) >. , <. ( +g ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) ) |
| 6 |
|
eqid |
|- ( M LMHom M ) = ( M LMHom M ) |
| 7 |
|
eqid |
|- ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) = ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) |
| 8 |
|
eqid |
|- ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) = ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) |
| 9 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
| 10 |
|
eqid |
|- ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) = ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) |
| 11 |
6 7 8 9 10
|
mendval |
|- ( M e. _V -> ( MEndo ` M ) = ( { <. ( Base ` ndx ) , ( M LMHom M ) >. , <. ( +g ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) |
| 12 |
1 11
|
eqtrid |
|- ( M e. _V -> A = ( { <. ( Base ` ndx ) , ( M LMHom M ) >. , <. ( +g ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) |
| 13 |
12
|
fveq2d |
|- ( M e. _V -> ( Base ` A ) = ( Base ` ( { <. ( Base ` ndx ) , ( M LMHom M ) >. , <. ( +g ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) ) |
| 14 |
5 13
|
eqtr4d |
|- ( M e. _V -> ( M LMHom M ) = ( Base ` A ) ) |
| 15 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 16 |
|
reldmlmhm |
|- Rel dom LMHom |
| 17 |
16
|
ovprc1 |
|- ( -. M e. _V -> ( M LMHom M ) = (/) ) |
| 18 |
|
fvprc |
|- ( -. M e. _V -> ( MEndo ` M ) = (/) ) |
| 19 |
1 18
|
eqtrid |
|- ( -. M e. _V -> A = (/) ) |
| 20 |
19
|
fveq2d |
|- ( -. M e. _V -> ( Base ` A ) = ( Base ` (/) ) ) |
| 21 |
15 17 20
|
3eqtr4a |
|- ( -. M e. _V -> ( M LMHom M ) = ( Base ` A ) ) |
| 22 |
14 21
|
pm2.61i |
|- ( M LMHom M ) = ( Base ` A ) |