| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mendplusgfval.a |  |-  A = ( MEndo ` M ) | 
						
							| 2 |  | mendplusgfval.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | mendplusgfval.p |  |-  .+ = ( +g ` M ) | 
						
							| 4 | 1 | mendbas |  |-  ( M LMHom M ) = ( Base ` A ) | 
						
							| 5 | 2 4 | eqtr4i |  |-  B = ( M LMHom M ) | 
						
							| 6 |  | ofeq |  |-  ( .+ = ( +g ` M ) -> oF .+ = oF ( +g ` M ) ) | 
						
							| 7 | 3 6 | ax-mp |  |-  oF .+ = oF ( +g ` M ) | 
						
							| 8 | 7 | oveqi |  |-  ( x oF .+ y ) = ( x oF ( +g ` M ) y ) | 
						
							| 9 | 8 | a1i |  |-  ( ( x e. B /\ y e. B ) -> ( x oF .+ y ) = ( x oF ( +g ` M ) y ) ) | 
						
							| 10 | 9 | mpoeq3ia |  |-  ( x e. B , y e. B |-> ( x oF .+ y ) ) = ( x e. B , y e. B |-> ( x oF ( +g ` M ) y ) ) | 
						
							| 11 |  | eqid |  |-  ( x e. B , y e. B |-> ( x o. y ) ) = ( x e. B , y e. B |-> ( x o. y ) ) | 
						
							| 12 |  | eqid |  |-  ( Scalar ` M ) = ( Scalar ` M ) | 
						
							| 13 |  | eqid |  |-  ( x e. ( Base ` ( Scalar ` M ) ) , y e. B |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) = ( x e. ( Base ` ( Scalar ` M ) ) , y e. B |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) | 
						
							| 14 | 5 10 11 12 13 | mendval |  |-  ( M e. _V -> ( MEndo ` M ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( x e. B , y e. B |-> ( x oF .+ y ) ) >. , <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. B |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) | 
						
							| 15 | 1 14 | eqtrid |  |-  ( M e. _V -> A = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( x e. B , y e. B |-> ( x oF .+ y ) ) >. , <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. B |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) | 
						
							| 16 | 15 | fveq2d |  |-  ( M e. _V -> ( +g ` A ) = ( +g ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( x e. B , y e. B |-> ( x oF .+ y ) ) >. , <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. B |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) ) | 
						
							| 17 | 2 | fvexi |  |-  B e. _V | 
						
							| 18 | 17 17 | mpoex |  |-  ( x e. B , y e. B |-> ( x oF .+ y ) ) e. _V | 
						
							| 19 |  | eqid |  |-  ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( x e. B , y e. B |-> ( x oF .+ y ) ) >. , <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. B |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( x e. B , y e. B |-> ( x oF .+ y ) ) >. , <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. B |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) | 
						
							| 20 | 19 | algaddg |  |-  ( ( x e. B , y e. B |-> ( x oF .+ y ) ) e. _V -> ( x e. B , y e. B |-> ( x oF .+ y ) ) = ( +g ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( x e. B , y e. B |-> ( x oF .+ y ) ) >. , <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. B |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) ) | 
						
							| 21 | 18 20 | mp1i |  |-  ( M e. _V -> ( x e. B , y e. B |-> ( x oF .+ y ) ) = ( +g ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( x e. B , y e. B |-> ( x oF .+ y ) ) >. , <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. B |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) ) | 
						
							| 22 | 16 21 | eqtr4d |  |-  ( M e. _V -> ( +g ` A ) = ( x e. B , y e. B |-> ( x oF .+ y ) ) ) | 
						
							| 23 |  | fvprc |  |-  ( -. M e. _V -> ( MEndo ` M ) = (/) ) | 
						
							| 24 | 1 23 | eqtrid |  |-  ( -. M e. _V -> A = (/) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( -. M e. _V -> ( +g ` A ) = ( +g ` (/) ) ) | 
						
							| 26 |  | plusgid |  |-  +g = Slot ( +g ` ndx ) | 
						
							| 27 | 26 | str0 |  |-  (/) = ( +g ` (/) ) | 
						
							| 28 | 25 27 | eqtr4di |  |-  ( -. M e. _V -> ( +g ` A ) = (/) ) | 
						
							| 29 | 24 | fveq2d |  |-  ( -. M e. _V -> ( Base ` A ) = ( Base ` (/) ) ) | 
						
							| 30 |  | base0 |  |-  (/) = ( Base ` (/) ) | 
						
							| 31 | 29 2 30 | 3eqtr4g |  |-  ( -. M e. _V -> B = (/) ) | 
						
							| 32 | 31 | olcd |  |-  ( -. M e. _V -> ( B = (/) \/ B = (/) ) ) | 
						
							| 33 |  | 0mpo0 |  |-  ( ( B = (/) \/ B = (/) ) -> ( x e. B , y e. B |-> ( x oF .+ y ) ) = (/) ) | 
						
							| 34 | 32 33 | syl |  |-  ( -. M e. _V -> ( x e. B , y e. B |-> ( x oF .+ y ) ) = (/) ) | 
						
							| 35 | 28 34 | eqtr4d |  |-  ( -. M e. _V -> ( +g ` A ) = ( x e. B , y e. B |-> ( x oF .+ y ) ) ) | 
						
							| 36 | 22 35 | pm2.61i |  |-  ( +g ` A ) = ( x e. B , y e. B |-> ( x oF .+ y ) ) |