Metamath Proof Explorer


Theorem mendplusgfval

Description: Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015) (Proof shortened by AV, 31-Oct-2024)

Ref Expression
Hypotheses mendplusgfval.a A = MEndo M
mendplusgfval.b B = Base A
mendplusgfval.p + ˙ = + M
Assertion mendplusgfval + A = x B , y B x + ˙ f y

Proof

Step Hyp Ref Expression
1 mendplusgfval.a A = MEndo M
2 mendplusgfval.b B = Base A
3 mendplusgfval.p + ˙ = + M
4 1 mendbas M LMHom M = Base A
5 2 4 eqtr4i B = M LMHom M
6 ofeq + ˙ = + M f + ˙ = f + M
7 3 6 ax-mp f + ˙ = f + M
8 7 oveqi x + ˙ f y = x + M f y
9 8 a1i x B y B x + ˙ f y = x + M f y
10 9 mpoeq3ia x B , y B x + ˙ f y = x B , y B x + M f y
11 eqid x B , y B x y = x B , y B x y
12 eqid Scalar M = Scalar M
13 eqid x Base Scalar M , y B Base M × x M f y = x Base Scalar M , y B Base M × x M f y
14 5 10 11 12 13 mendval M V MEndo M = Base ndx B + ndx x B , y B x + ˙ f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y
15 1 14 syl5eq M V A = Base ndx B + ndx x B , y B x + ˙ f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y
16 15 fveq2d M V + A = + Base ndx B + ndx x B , y B x + ˙ f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y
17 2 fvexi B V
18 17 17 mpoex x B , y B x + ˙ f y V
19 eqid Base ndx B + ndx x B , y B x + ˙ f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y = Base ndx B + ndx x B , y B x + ˙ f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y
20 19 algaddg x B , y B x + ˙ f y V x B , y B x + ˙ f y = + Base ndx B + ndx x B , y B x + ˙ f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y
21 18 20 mp1i M V x B , y B x + ˙ f y = + Base ndx B + ndx x B , y B x + ˙ f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y
22 16 21 eqtr4d M V + A = x B , y B x + ˙ f y
23 fvprc ¬ M V MEndo M =
24 1 23 syl5eq ¬ M V A =
25 24 fveq2d ¬ M V + A = +
26 plusgid + 𝑔 = Slot + ndx
27 26 str0 = +
28 25 27 eqtr4di ¬ M V + A =
29 24 fveq2d ¬ M V Base A = Base
30 base0 = Base
31 29 2 30 3eqtr4g ¬ M V B =
32 31 olcd ¬ M V B = B =
33 0mpo0 B = B = x B , y B x + ˙ f y =
34 32 33 syl ¬ M V x B , y B x + ˙ f y =
35 28 34 eqtr4d ¬ M V + A = x B , y B x + ˙ f y
36 22 35 pm2.61i + A = x B , y B x + ˙ f y